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Abstract— The pharmaceutical supply chain plays a crucial role in ensuring timely and efficient delivery of medicines, yet it faces persistent
challenges related to waste generation, overproduction, and resource inefficiency. These inefficiencies contribute not only to economic losses
but also to environmental and ethical concerns surrounding the disposal of expired and unused medical products. This research proposes a
Cognitive Decision Intelligence (CDI) framework that integrates Natural Language Processing (NLP) and Big Data Analytics to achieve
sustainable pharmaceutical supply chain optimization with a focus on medical waste prevention. The proposed approach utilizes linguistic data
interpretation, real-time data streams, and predictive analytics to support intelligent, data-driven decision-making. By merging NLP-based
semantic understanding with machine learning-driven forecasting, the CDI system is capable of predicting demand, identifying waste risks, and
recommending corrective measures. Experimental simulations demonstrate that the proposed model can significantly reduce inventory
redundancy and improve sustainability metrics. Furthermore, ethical and explainability considerations are embedded within the design to ensure
transparency and accountability. The findings underscore how cognitive analytics can transform traditional pharmaceutical logistics into an
adaptive, sustainable, and intelligent ecosystem. The inclusion of blockchain ensures data authenticity and ethical transparency in supply chain
operations.

Keywords— Cognitive Decision Intelligence (CDI), Natural Language Processing (NLP), Big Data Analytics, Pharmaceutical Supply Chain,
Sustainability, Medical Waste Reduction, Reinforcement Learning, Blockchain, Explainable Al

multiple supply chain nodes—from production to end-oflife
I.  INTRODUCTION management.

The pharmaceutical industry is one of the most data-rich
yet waste-intensive sectors of global healthcare. According to
the World Health Organization’s Global Report on Medical
Waste and Sustainability in Healthcare Supply Chains [1],
nearly 15% of manufactured medicines become waste

The objective of this research is to design and evaluate a
Cognitive Decision Intelligence framework to optimize the
pharmaceutical supply chain through the prevention of medical
waste. The key contributions of this paper are:

annually. Such wastage not only leads to significant financial 1. Development of an integrated CDI framework that
losses but also poses serious environmental hazards and public uses NLP and Big Data for intelligent decision
health risks through improper disposal. Building a sustainable making.

pharmaceutical supply chain has therefore emerged as a
strategic imperative for healthcare organizations, policymakers,
and researchers alike. Traditional supply chain management

2. Implementation of predictive models for demand
forecasting and waste risk assessment.

systems primarily rely on structured datasets, static rules, and 3. Design of explainable and ethical decision modules to
retrospective analysis. Recent cognitive and blockchain-based ensure transparent sustainability outcomes.

systems have demonstrated the potential for improving

transparency and decision accuracy across healthcare logistics I. LITERATURE REVIEW

[16, 17]. However, they fail to fully utilize the abundance of

unstructured data generated across the healthcare ecosystem — Recent studies have explored various approaches to improve

including prescription records, hospital feedback, regulatory  efficiency and sustainability in pharmaceutical logistics. The
notices, and patient sentiment. This unstructured information  literature can broadly be categorized into four thematic areas:
holds valuable contextual insights that can help anticipate supply chain optimisation, medical waste management, Big
demand fluctuations, detect potential drug recalls, and forecast =~ Data analytics in healthcare, and NLP-driven decision
waste patterns. systems.

Cognitive Decision Intelligence (CDI) offers a A. Pharmaceutical Supply Chain Op[imisa[ion
transformative paradigm by combining artificial intelligence,
linguistic processing, and data analytics to emulate human
reasoning and enable adaptive decision-making. When
supported by Natural Language Processing (NLP) and Big
Data Analytics, CDI can provide actionable insights across

Optimization approaches such as linear programming and
stochastic modelling have long been employed to minimize
costs and shortages [2]. However, these methods are limited by
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their reliance on historical, structured data, rendering them less
effective in dynamic, uncertain healthcare environments.

B. Medical Waste Management

Research on pharmaceutical waste management has
predominantly focused on post-consumption stages—including

segregation, collection, and disposal of expired drugs [3]. Few
studies have addressed preventive measures within the supply
chain itself. Preventive strategies involving predictive analytics
have shown promise in reducing excess stock but often lack
integration with real-time decision intelligence.

Distribution of Medical Waste Sources

Inefficient Redistribution

Others

Overproduction

Transport Damage

Expired Stock

Figure 1: Distribution of medical waste across pharmaceutical supply chain segments

C. Big Data Analytics in Healthcare

Big Data enables healthcare organizations to process large
volumes of structured and unstructured information for
predictive and prescriptive insights. Data mining and machine
learning models, such as LSTM, Random Forest, and ARIMA,
have been used to predict medicine demand trends [4]. Yet, the
fusion of Big Data with contextual linguistic intelligence
remains underexplored in pharmaceutical logistics.

D. NLP-Driven Decision Systems

NLP has been successfully applied in domains such as
clinical text analysis, patient sentiment detection, and
pharmacovigilance [5]. In supply chain contexts, NLP can
extract insights from regulatory documents, supplier
communications, and customer feedback. The integration of
NLP with Big Data frameworks allows automated semantic
reasoning and risk prediction, essential for Cognitive Decision
Intelligence systems.

E. Research Gap

While previous works address individual components—
supply chain optimization, waste management, or data
analytics—there is limited research that holistically combines
NLP and Big Data within a CDI architecture to enhance
sustainability and prevent medical waste. This paper aims to
bridge that gap by presenting an explainable, scalable, and
ethically aligned cognitive decision framework. The proposed
architecture draws from recent advances in Cognitive Decision
Intelligence for sustainable supply chains [6].
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III. METHODOLOGY

A. Conceptual Framework

The proposed Cognitive Decision Intelligence Framework
(CDIF) comprises five primary components:

1. Data Acquisition Layer: Collects multi-source
data including sales logs, hospital orders, IoT
sensor readings (temperature and humidity), and
unstructured text such as prescriptions and

regulatory updates.

Data Preprocessing and Integration: Cleans,
normalizes, and integrates structured and
unstructured data into a unified data lake.

NLP Processing Unit: Utilizes transformer-based
language models (e.g., BERT or BioBERT) for
semantic understanding. This unit extracts key
entities such as drug names, expiry details,
demand indicators, and sentiment polarity.

Predictive Analytics Layer: Applies time-series
forecasting (ARIMA/LSTM) and regression
models to predict demand and identify potential
overstock or understock risks. Such predictive
models have been widely applied for supply chain
risk assessment and demand forecasting in
medical contexts [11].
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5. Cognitive Decision Engine: Implements rule-
based reasoning and reinforcement learning to
recommend optimal decisions (e.g., redistribution,

procurement, or recycling), leveraging cognitive
control approaches validated in recent supply
chain research [6, 17].

Proposed CDI Framework for Sustainable Pharmaceutical Supply Chain

A hierarchical flow showing how the CDI system integrates NLP and Big Data analytics to prevent medical
waste follows:
Data Sources (EHRs, Inventory Records, Prescriptions, Distribution Logs)

!

Natural Language Processing Layer
- Entity recognition focused on medications and their expiry data
- Sentiment & Intent Analysis
- Text Classification of Medical Reports

1

Big Data Analytics Layer
- Data Cleaning & Integration
- Predictive Modelling (demand, expiry risk)
- Optimization Algorithms

!

Decision Intelligence Engine
- Rule-based Reasoning
- Reinforcement Learning Feedback]
- Real-time Decision Dashboard

!

Sustainable Action Layer
- Redistribution of Near-Expiry Drugs
- Inventory Rebalancing
- Waste Tracking and Reporting.

Figure 2: Cognitive Decision Intelligence (CDI) Framework for sustainable pharmaceutical supply chain optimization.

B. Mathematical Formulation

Let Dt denote demand at time ¢, I, denote inventory, and E;
denote expiry risk. The objective is to minimize overall waste,
W, represented as:

Minimize W; = o(I; — D;)* + BE;,
where o and [ are weighting coefficients balancing

overstocking and expiry risk. Forecasted demand D" t is
obtained via:

Dy = f(Di-1,Di—2,..., Xt),
where it X, includes contextual NLP-derived features such as
disease trends or prescription sentiment scores.

a. NLP-Enhanced Waste Risk Prediction

This model estimates the probability of pharmaceutical
waste by fusing structured operational data with contextual
NLP-derived insights. Let

X = [Ds, I+, St, TopicVec, ]

be the composite feature vector where Dt and It represent
historical demand and inventory levels, S; denotes
sentiment polarity extracted from domain texts, and
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TopicVec, represents latent topic embeddings. The model
learns the mapping

—[Ju-'a:;te(t -+ 1) — f(Xf; 9:]..

where f is an LSTM-based function parameterized by 6.
The LSTM transition is defined as

hy =LSTM(X,, hy—1); g = a(Wihe +b)

and the resulting probability
P aste (t -+ 1) = il

indicates the likelihood of excess or expired stock,
flagged as "High Risk” when exceeding a predefined
threshold 7 . This hybrid model combines linguistic cues
(policy tone, outbreak signals) with quantitative indicators
to enable proactive waste mitigation.

b. Q-Learning-Based Adaptive Redistribution

The decision engine employs reinforcement learning
to minimize pharmaceutical waste while maintaining
supply reliability. Each state is represented as

Sg = {It-; Dy, Rt_};
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where It is inventory, Dt is demand, and Rt is the
predicted waste risk from Algorithm 1. An action at
€ {redistribute, procure, hold, discard} yields a
reward

e = — (Wi + 8S: +~vCh),
penalizing waste Wt, shortage St, and cost Ct. The
policy is optimized via the Q-learning update rule:

Q(s1,a;)  Q(s1,ar)+nlri+y max Q(se11,0")—Q (50, a0)]-

Over iterative feedback cycles, the model converges
to the optimal policy

w7 (s) = arg max Q(s, a),
enabling adaptive redistribution and procurement

strategies aligned with real-time sustainability
objectives.

Big Data Processing

The framework leverages a distributed Hadoop or
Spark architecture for data ingestion and parallel
processing. Streamed data is processed through Kafka
pipelines to support near real-time updates, enabling
adaptive decision making.

D. NLP Implementation

Recent studies on NLP in clinical data management
highlight the importance of domain-specific embeddings for
accurate semantic interpretation [13]. The NLP module is
trained on medical corpora using domain-specific embeddings.
Techniques such as Named Entity Recognition (NER) and
topic modelling identify emerging healthcare trends
influencing medicine consumption. Sentiment analysis on
social media or feedback reports helps detect potential demand
surges (e.g., during seasonal epidemics).

Text Data Extraction — Tokenization & Cleaning — Feature Engineening — Model Traming (BERT, LSTM,
etc.) — Prediction (Expiry / Overstock Risk) — Model Evaluation & Feedback Loop

Figure 3: Workflow of NLP-driven predictive modelling for supply chain forecasting

E. Decision Support System

The cognitive engine integrates results from predictive
models and NLP insights to form multi-criteria decision
matrices. Recommendations are generated using
reinforcement learning, optimising for cost, waste, and service
level simultaneously. Human oversight remains integral to
validate machine-suggested actions, ensuring ethical
compliance.

F.  Blockchain Integration for Traceability and Authenticity

Ensuring transparency, traceability, and authenticity in
pharmaceutical logistics is crucial for preventing counterfeit
drugs and minimising losses across the supply chain.
Integrating blockchain technology within the proposed
Cognitive Decision Intelligence (CDI) framework can
establish a decentralised ledger that records each transaction—
from manufacturing and storage to distribution and end-point
delivery—in a verifiable and tamper-proof manner.

Each block can encapsulate metadata such as batch ID,
manufacturing date, expiry, temperature logs, and waste-risk
score predicted by the CDI model. Smart contracts can be
employed to automate compliance verification, trigger alerts
for temperature deviations, or initiate redistributions based on
predefined sustainability rules.

Formally, the blockchain ensures immutability through a
cryptographic hash function:

H; = SHA-256(B;_, | T3),
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where Hi is the hash of the i-th block, Bi—1 is the previous
block, and Ti denotes the transaction set. Any modification to
a record alters the chain’s integrity, thus guaranteeing data
authenticity.

By embedding blockchain into the CDI pipeline,
pharmaceutical networks gain a unified, trustworthy system
for tracking products and verifying sustainability compliance,
ultimately improving accountability and reducing both waste
and counterfeit circulation [8,16,19].

IV. EXPERIMENTAL SETUP AND RESULTS

A. Dataset Description

a) For experimentation, synthetic pharmaceutical supply
chain data was generated using real-world statistical
distributions. Recent Al-based optimisation studies in
biopharma production support similar synthetic data generation
strategies for simulation [9]. Data included historical demand,
stock levels, expiration records, and 100,000 unstructured text
samples (hospital orders, public health advisories, and patient
reviews).

B. Model Configuration
Demand Forecasting Model: LSTM with two hidden
layers (128 neurons each), learning rate 0.001.

NLP Model: Fine-tuned BioBERT for entity and sentiment
extraction.

Decision Layer: Q-learning-based reinforcement model for
adaptive control.
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Table 1: Performance Metrics of NLP Models
Model Acc | Fl-a | Prec | Re Interpr
BERT 932 | 092 | 091 | 0.9 | Moderate
RoBERTa 948 | 094 | 0.95 | 0.9 | Moderate
GPT-3 96.0 | 096 | 095 | 0.9 High
LSTM 89.1 | 0.87 | 0.85 | 0.8 High
Decision Tree | 75.0 | 0.72 | 0.70 | 0.7 | Very High

100

94.8%

95

85t

Accuracy (%)

80r

5r

" BERT

RoBERT

96.0%

GPT-3

Models

Accuracy Comparison of NLP Models

LSTMDecision Tree (Baseline)

Figure 4: Forecast accuracy comparison of different predictive models for pharmaceutical demand

C. Evaluation Metrics

1.
2
3.
4

D. Results

Forecast Accuracy (RMSE)
Waste Reduction Percentage (WRP)
Decision Latency (DL)

Explainability Score (ES) — proportion of
interpretable decisions presented to users

Forecast Accuracy: 94.6%

866

Medical Waste Reduction: 38% average reduction
compared to baseline heuristic models.

Decision Latency: < 2.5 seconds per query in
simulated environment.

Explainability Score: 0.82 (on scale 0-1).

The predictive analytics accurately captured seasonal
variations and disease-driven spikes, while the NLP layer
effectively identified overstock risks linked to policy changes
or misinformation events.
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CDI Model Training Accuracy Over Epochs
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Figure 5: Improvement in CDI model accuracy over training iterations

E.  Comparative Analysis

When benchmarked against conventional analytics decisions.
systems, the proposed CDI model demonstrated superior
adaptability and lower variance in forecasting errors. The

Table 2: Traditional vs CDI-Driven Supply Chain Models

Parameter Traditional CDI Improvement
Forecast Accuracy 68% 91% +23%
Medical Waste Reduction 12% 45% +33%
Inventory Cost $1.2M $0.8M -33%
Decision Latency 4 hrs 30 mins -87.5%
Redistribution Efficiency 54% 89% +35%

Decision Latency Comparison

250

]
o
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100

Average Decision Time (minutes)

un
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CDI-Based

10

integration of linguistic context (via NLP) significantly
enhanced the responsiveness of inventory management

Figure 6: Average decision latency comparison between traditional and CDI-driven systems
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Table 3: Medical Waste Reduction over Time

Month | Before CDI | After CDI
Jan 12% 11%
Feb 13% 10%
Mar 14% 8%
Apr 15% 6%
May 15% 5%
Jun 145 4%
Jul 13% 4%
Aug 13% 3%
Sep 12% 3%
Oct 11% 2%
Nov 11% 2%
Dec 10% 1.5%
Monthly Medical Waste Reduction Before and After CDI Integration
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Figure 7: The graph illustrates the percentage of medical waste generated each month before and after the implementation
of the CDI system. A consistent decline in waste levels is observed following integration, indicating a 40—-60% reduction
overall.

Data Flow in CDI Decision Loop

Input Data Streams — NLP Engine — Analytical Model — Decision Intelligence — Feedback — Continuous
Learning

Figure 8: Continuous data flow and feedback loop in the CDI-driven decision system

The experimental findings validate the hypothesis that
cognitive decision frameworks can substantially improve
Consistent with prior findings on Al-driven logistics and sustainability within pharmaceutical supply chains. By
sustainable decision intelligence [12], the CDI framework integrating NLP and Big Data analytics, the proposed model
demonstrates improved adaptability and resource optimisation.

V. DISCUSSION
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not only identifies waste risks early but also contextualises Moreover, the inclusion of explainable decision
them through semantic reasoning. interfaces ensures that human experts can interpret and audit
The key advantage of this system lies in its cognitive system outputs, enhancing trust and accountability. From a
adaptability — it continuously learns from new data patterns sustainability standpoint, reduced overproduction directly
and adjusts decisions accordingly. For instance, NLP-derived contributes to carbon footprint reduction, aligning with global
sentiment signals regarding a vaccine’s side effects can trigger Sustainable Development Goals (SDGs) on responsible
proactive distribution adjustments before wastage occurs. consumption and climate action.

Correlation Between Overstock and Expired Stock
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Figure 9: Scatter plot showing correlation between overstock and medicine expiry before and after CDI optimisation
However, challenges remain in ensuring data quality, audio, I0T) to further refine CDI capabilities. The observed
interoperability across healthcare systems, and managing gains in sustainability metrics are in line with recent data-
computational complexity for real-time operations. Future driven frameworks for green pharmaceutical operations [15].

work should focus on integrating multimodal data (images,

Table 4: Policy Impact Analysis — Key KPIs Before and After CDI Implementation

KPI Before CDI After CDI Change
Stock Expiry Rate 18% 4% -T7%
Supply Shortages 10 per month 3 per month -70%
Carbon Emission 4.2 tons/month | 2.8 tons/month | -33%
Policy Compliance 68% 95% +27%

1. Data Privacy and Security: All patient-linked data

VI. ETHICAL AND EXPLAINABILITY CONSIDERATIONS undergo anonymisation and comply with privacy

Explainable Al principles have become fundamental in regulations such as GDPR and HIPAA.
healthcare decision support to ensure transparency and 2. Bias Mitigation: NLP models are periodically
accountability [7], and the proposed CDI framework audited for linguistic bias to prevent inequitable
incorporates multiple safeguards: decisions.
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3. Explainable AI (XAI): The system provides
humanreadable explanations for each decision
path, fostering transparency.

4. Accountability Framework: A human-in-the-loop

mechanism ensures that critical redistribution or
disposal decisions are verified by supply chain
officers. Moreover, the integration of blockchain-
based traceability frameworks enhances ethical
governance by providing immutable audit trails

for all pharmaceutical transactions [18, 19]. This
approach ensures that transparency and data
integrity are preserved across decentralized
healthcare networks. By embedding these
mechanisms, the framework promotes responsible
Al adoption and ethical sustainability. This aligns
with the ethical guidelines proposed for Al-driven
healthcare supply chains by Wang and Rossi [14],
emphasizing fairness and transparent governance.

Ethical and Explainability Layer of CDI System

1. Data Transparency Layer — Audit Logs, Provenance
2. Model Explainability Layer — SHAP, LIME
3. Decision Accountability Layer — Human-in-the-loop Validation
4. Ethical Governance Layer — Policy and Compliance Monitoring

Figure 10: Multi-layered ethical and explainability framework of the CDI system.

VII. Conclusion and Future Work

This paper presented a Cognitive Decision Intelligence
framework integrating NLP and Big Data Analytics to
optimize sustainable pharmaceutical supply chains and
prevent medical waste. The approach leverages semantic
understanding, predictive modelling, and adaptive reasoning
to support intelligent, explainable decision-making.
Experimental results demonstrate the potential of the system
to achieve up to 38% waste reduction and significant
improvement in forecasting accuracy.

The study emphasizes that merging linguistic and
quantitative intelligence transforms traditional analytics into
cognitive ecosystems capable of human-like reasoning. This
not only improves operational efficiency but also aligns with
ethical and environmental imperatives in modern healthcare.

A limitation of this is that the current implementation
assumes structured data availability and limited supply chain
nodes. In real-world settings, data incompleteness and
regulatory constraints could influence model scalability.
Additionally, real-time blockchain synchronization remains
computationally intensive for large-scale deployments.

Future research will extend this framework to
include:

Federated Learning: enabling collaborative model
training without compromising data privacy.
Federated learning has emerged as a secure
mechanism for decentralized data collaboration in
healthcare analytics [10].

Multi-Modal Intelligence: combining visual (e.g.,
barcode, packaging) and textual data for
comprehensive waste tracking. The convergence of
CDI, NLP, Big Data, and blockchain technologies
[16,17,18,19] promises a sustainable, intelligent, and
ethically governed pharmaceutical supply chain that
aligns  healthcare  innovation  with  global
sustainability goals and lays the foundation for future
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infrastructures.
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