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Abstract: 

The solution of a problem of analogue circuit optimization is mathematically defined as a controllable dynamic system. In this context the 
minimization of the processor time of designing can be formulated as a problem of time minimization for transitional process of dynamic 
system. A special control vector that changes the internal structure of the equations of optimization procedure serves as a principal tool for 
searching the best strategies with the minimal CPU time. In this case a well-known maximum principle of Pontryagin is the best theoretical 
approach for finding of the optimum structure of control vector. Practical approach for realization of the maximum principle is based on the 
analysis of behaviour of a Hamiltonian for various strategies of optimization. It is shown that in spite of the fact that the problem of optimization 
is formulated as a nonlinear task, and the maximum principle in this case isn't a sufficient condition for obtaining a minimum of the functional, it 
is possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the best strategy found by means of 

maximum principle compared with the traditional approach is equal two to three orders of magnitude. 

Keywords—analog circuits optimization; optimal strategy; theory of control; maximum principle; acceleration effect 

I.  INTRODUCTION 

The problem of reducing processor time spent on the 

optimization of electronic circuits is one of the important 

problems associated with improving the quality of design. 

Some works devoted to this problem are devoted to how to 

reduce the number of operations in solving two main 

problems: circuit analysis and numerical optimization. Solving 

these problems gives us a significant reduction in CPU time. 

Methods that can be used in the analysis of complex systems 

are being improved. Some ideas regarding the use of the 
sparse matrix method [1-2] and decomposition methods [3] 

are used to reduce the analysis time of circuits. Other 

alternative methods such as homotopy methods [4] were 

successfully applied for circuit analysis too. 

Some methods of optimization were developed for circuit 

designing, timing, and area optimization [5-6]. However, 

classical deterministic optimization algorithms may have a 

number of drawbacks: they may require that a good initial 

point be selected in the parameter space, they may reach an 

unsatisfactory local minimum, and they require that the cost 

function be continuous and differentiable. To overcome these 

issues, special methods were applied to determine the initial 
point of the process by centering [7], or by applying geometric 

programming methods [8].  

Other formulation of the circuit optimization problem was  

developed at a heuristic level some decades ago [9]. This 

approach ignored Kirchhoff’s laws for all the circuit or part of 

it. The practical aspects of this idea were developed for the 

optimization of microwave circuits [10] and for the synthesis 

of high-performance analog circuits [11] in case where all the 

equations of the circuit model were not solved during the total 

optimization process. 

The new formulation of the problem of circuit optimization 
is formulated in terms of the theory of optimal control [12-13]. 

In this case the process of circuit optimization was generalized 

and defined as the dynamic controllable system. A basic 

element is the control vector that changes the structure of the 

equations of system of optimization process. Thus there is a 

set of the strategies of optimization that have different number 

of operations and different processor time. Introduction of the 

function of Lyapunov of the optimization process [14] allows 

to compare various strategies of optimization and to choose 

the best of them having the minimum processor time. At the 

same time, the solution to the problem of finding the optimal 

strategy and the corresponding optimal trajectory can be found 

within the framework of the Pontryagin maximum principle 

[15]. 
The main complexity of application of the maximum 

principle consists of the search of initial values for auxiliary 

variables at the solution of the conjugate system of equations. 

Application of the maximum principle in case of linear 

dynamic systems is based on the creation of an iterative 

process [16-17]. In case of nonlinear systems, the convergence 

of this process is not guaranteed. However, application of the 

additional approximating procedures [18-19] allows 

constructing sequence of the solutions converging to a limit 

under certain conditions. 

Section 2 gives the formulation of the circuit optimization 

process based on the methods of control theory using a control 
vector. Section 3 gives an example of the application of the 

maximum principle for optimizing the simplest nonlinear 

circuit. It is shown that analysis of the Hamiltonian behaviour 

allows one to obtain the exact structure of a control vector that 

minimizes processor time. 

II. PROBLEM FORMULATION 

Before you begin to format your paper, first write and save 

the content as a separate text file. We define the optimization 

process for analog circuit as the problem of minimization of 

the generalized cost function ( )UXF ,  by the equation (1) with 

the constraints (2): 
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( ) ( ) 0Xgu1 jj =− , j M= 1 2, , ... , ,          (2) 

where 
NRX∈ , ( )X,XX ′′′= , 

KRX ∈′ , is the vector of the 

independent variables and the vector 
MRX ∈′′  is the vector 

of dependent variables ( MKN += ), s is the iterations number, 

s
t is the iteration parameter, 1

Rt
s

∈ , ( )X
j

g  presents the 

equation j of the circuit’s model,  H ≡ H(X,U) is the direction 
of the generalized cost function F(X,U) decreasing, U is the 
vector of the special control functions ( )

M
uuu ,...,,U 21= , where 

Ω∈ju , { }Ω = 0 1; . The generalized cost function F(X,U) is 

defined as: 
 

  ( ) ( ) ( )UX,XCUX,F ϕ+=           (3) 

 

where  C(X) is the non-negative cost function of the designing 

process, and ( )UX ,ψ  is the additional penalty function: 

 

   ( ) ( )
=

⋅=
M

j

jj gu
1

2 X
1

UX,
ε

ϕ .          (4)  

 
By means of this formulation we redistribute the computer 

time expense between the solution of problem (2) and the 

optimization procedure (1) for the function ( )UXF , . The 

control vector U is the main tool for the redistribution process 
in this case. The problem of search of the optimal design 
strategy with a minimal CPU time is formulated as the typical 
problem for the functional minimization of the control theory. 
The functional that needs to minimize is the total CPU time T 
of the design process. This functional depends on the 
operations number and on the strategy of designing that has 
been realized. The main difficulty of this definition is 

unknown optimal dependencies of all control functions u j
. 

The Eq.(1) can be replaced by the differential equation in 
continuous form using the next formula: 

 

  ( )UX,i
i f

dt

dx
= ,  Ni ,...,2,1= ,          (5) 

 

The equations (2), (3), (4) and (5) compose the continuous 

form of the design process. The functions of the right hand 

part of the system (5) can be determined for example for the 

gradient method by means of the next expression: 
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where the operator 
ixδδ /  hear and below means 

( )
( ) ( )δ

δ
ϕ

∂ ϕ
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∂
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X
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xi i pp K
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
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, 
s

ix  is 

equal to ( )x t dti − ; ( )η i X  is the implicit function 

( ( )x Xi i=η ) that is determined by system (2). 

The control variables u j  have the time dependency in 

general case. The equation number j is removed from (2) and 

the dependent variable xK j+  is transformed to the independent 

when u j =1. This independent parameter is defined by the 

formulas (5), (6'). In this case there is no difference between 

formulas (6) and (6'). The transformation of the vectors ′X  

and ′′X  can be done at any time moment.  

We need to find the optimal behavior of the control 

functions u j  during the optimization process to minimize the 

total computer time of designing. The more adequate method 
for solution of this problem is the maximum principle of 
Pontryagin. 

III. MAXIMUM PRINCIPLE APPLICATION 

The main complexity of application of the maximum 
principle consists of the search of initial values for auxiliary 
variables at the solution of the conjugate system of equations. 
Application of the maximum principle for the linear dynamic 
systems is based on creation of iterative process [16]. 

In case of nonlinear systems the convergence of this 
process isn't guaranteed, however application of the additional 
approximating procedures [17-19] allows constructing 
sequence of the solutions meeting to a limit under certain 
conditions. In the present work the possibility of application of 
the maximum principle for creation of the optimal control 
vector and the optimal trajectory of optimization process 
corresponding to it is investigated. The example of 
optimization of the simplest nonlinear circuit for which the 
analytical solution of the task was obtained is investigated. We 
will consider a nonlinear circuit of a voltage divider in Fig. 1. 

 

 
Fig. 1. Simplest nonlinear circuit of voltage divider. 

 

Let us consider that the nonlinear element has the 
following dependence: 

 

( )
01 VVbaRn −+= ,           (7) 

 

where a>0, b>0, a>b,  0V  and 1V  the voltages on an entrance 

and an exit of circuit. 
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We will consider that 0V  is equal 1. We will define the 

variables x1, x2. Rx =1 , 12 Vx = . Thus the vector of phase 

variables 
2

RX ∈ . In this case the formula (7) can be 
replaced with the following expression: 

 

     ( )12 −+= xbaRn .           (8) 

 

We can present the equation of a circuit in the form: 
 

     
( ) ( )[ ] 01, 1212211 =−−++≡ xxbaxxxxg

          
(9) 

 

The circuit optimization problem is formulated as the 
problem of obtaining a given voltage w at node 1. Let us 
define the cost function of the optimization process using the 
formula: 

       ( ) ( )2

2 wxXC −= .         (10) 

 

In this case the problem of circuit optimization is 

converted to minimization of the cost function ( )XC . 

Following theoretical basis, that were developed in [12], we 
formulate the problem for circuit optimization as a task of 
search of the optimization strategy with a minimum possible 
CPU time. For this purpose we define the functional, which is 
subject to minimization, by the following expression: 

 

           

( )=
T

dtXfJ
0

0 ,         (11) 

 

where ( )Xf 0  the function which is conditionally 

determining density of number of arithmetic operations in unit 
of time of t. In that case, the integral (5) defines total number 
of operations necessary for circuit optimization and is 
proportional to the total CPU time. 

The structure of function ( )Xf 0  can't be defined; 

however we can compute CPU time, using possibilities of the 
compiler. We will identify further the integral (11) with CPU 
time and therefore the problem of minimization of CPU time 
corresponds to a problem of minimization of the integral (11). 

According to [12] we introduce the control vector U that 
consists of only one component u(t) for the reviewed example. 
This component has one of two possible values: 0 or 1. The 
control vector allows to generalize the circuit optimization 
process and to define a set of the optimization strategies 
differing in operations number and CPU time. The generalized 
cost function can be defined in this case by means of the 
formula: 

 

    ( ) ( ) ( )XXCXF ϕ+= ,         (12) 

 

where ( )Xϕ  is an additional penalty function, which can be 

determined, for example, by the following formula: 
 

( ) ( )
=

⋅=
M

j

jj XguX
1

2ϕ ,        (13) 

 

where M is the number of nodes of the circuit. In our case 
M=1. The process of circuit optimization thus can be 
described by the system (14) with restrictions (15): 

        

( )uxxf
dt

dx
i

i ,, 21= ,   i=1, 2,        (14) 

 

( ) ( ) 0,1 211 =− xxgu ,        (15) 

 

where functions ( )uxxf i ,, 21
 are defined by a concrete 

numerical method of optimization. When using a gradient 
method these functions are defined by the following formulas: 
 

( ) ( )XF
x

uxxf
i

i
δ

δ
−=,, 21

,   i=1, 2.        (16) 

 

The value u(t)=0 corresponds to the traditional strategy of 
optimization (TSO). In this case in system (14) there is only 
one equation for the independent x1 variable while the variable 
x2 is defined from the equation (15). The value u(t)=1 
corresponds to the modified traditional strategy of 
optimization (MTSO) when both x1 and x2 variables are 
independent. In this case the system (14) includes two 
equations for the independent variables x1 и x2, and the 
equation (15) disappears. Change of the value of function u(t) 
with 0 on 1 and back can be made at any moment, and 
generates a set of various strategies of optimization. Two main 
strategies of structural basis can be defined by means of the 
next two approaches. 

1) TSO, u=0. The equations (14), (16) are replaced with the 

following equations: 
 

1

2

2

1

dx

dx

dx

C

dt

dx ∂
−=          (17) 

 

( )
dt

dx

x

x

dt

txdx 1

1

212 ,

∂

∂
=          (18) 

 

where the derivative 
12 / dxdx  is defined from the equation (9), 

and  

( ) 













++

++
+−=

1

2

1

1

1

2

4

2
1

2

1

bxcx

bcx

bdx

dx , с=a-b. 

2) MTSO, u=1. The equations (14) are transformed to the next 
one: 
 

( ) ( )[ ]XgXC
xdt

dx

i

i 2

1+−=
δ

δ
, i=1, 2.        (19) 

 

In general case the right hand parts of the equations (14) 
can be presented in the form: 

 

       ( ) ( ) ( ) ( )
21122111211

,,1,, xxfuxxfuuxxf ⋅+⋅−= ,  

             (20) 

       ( ) ( ) ( ) ( )
21222121212

,,1,, xxfuxxfuuxxf ⋅+⋅−= , 
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where the functions ( )21, xxf ij
 are determined by the 

following formulas: 

( ) ( )

( ) 













++

++
+−

−
=

1

2

1

12
2111

4

2
1,

bxcx

bcx

b

xw
xxf  

( ) ( ) ( ) ( )[ ]{ }221222112 1112, xxbaxxxxxf −++−−−=                          

                  (21) 
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2
2121

4
1

2
,
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
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−
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bxcx

bax

b

xw
xxf  

( )
]})1()1[(

)2(){(2,

22212

2122122

xxbaxxx

bxxcwxxxf

−++−⋅

+++−−=
 

According to methodology of the maximum principle, the 
system of the conjugate equations for additional variables 

21
,ψψ  has the next form: 

( ) ( )
2

1

212
1

1

2111 ,,,,
ψψ

ψ
⋅

∂

∂
−⋅

∂

∂
−=

x

uxxf

x

uxxf

dt

d
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             (22) 
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2

2

212
1

2

2112 ,,,,
ψψ

ψ
⋅

∂

∂
−⋅

∂

∂
−=

x

uxxf

x

uxxf

dt

d
, 

where the partial derivatives of functions ( )uxxf i ,, 21
, i=1, 

2 can be calculated by formulas (20), (23). 
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∂

 

The Hamiltonian is expressed by the following formula: 
 

( ) ( )uxxfuxxfH ,,,, 21222111 ⋅+⋅= ψψ       (24) 

Substituting (14) in (17) and (18) and doing identical 
transformations we obtain the following expression for a 
Hamiltonian: 

( ) ( )
( )2121

2121221111

,,,

,,

ψψ

ψψ

xxu

xxfxxfH

Φ⋅+

⋅+⋅=
         (25) 

where 
  

        

( ) ( ) ( )[ ]
( ) ( )[ ]212121222

2111211212121

,,

,,,,,

xxfxxf

xxfxxfxx

−⋅+

−⋅=Φ

ψ

ψψψ
. 

 
According to the maximum principle, we obtain the next 

main condition for the control function u: 
 





>Φ

<Φ
=

0,1

0,0
u                      (26) 

 

The behavior of the control function u(t) that corresponds 
to the maximum principle is defined also by behavior of 

functions ( )t1ψ  and ( )t2ψ , which are computed from the 

equations (22). At the same time the solution of the equations 

(22) depends on initial values 10ψ  and 20ψ , which are 

defined within the precision of common multiplier. One of 
these constants can be taken arbitrary. Let us define the 

constant 110 −=ψ . The value of 20ψ  that corresponds to the 

adequate solution of a task in the conditions of the maximum 
principle can be obtained by iterative procedure. We use 
iterative procedure on the basis of the Newton method that 
provides the solution for the minimum time. 

The analysis of optimization process for a similar example 
which is carried out in work [17] showed that the TSO (u=0) 

is optimal one when initial values of variables 
1x and 2x , 

(
10x , 20x ) are positive. At the same time the negative initial 

values of the variable 
2x leads to significantly other results. In 

case of negative initial values of variable 20x , emergence of 

effect of acceleration of the process of circuit optimization is 
possible. This effect accelerates the optimization process in 
some times. It is interesting to check, whether it is possible to 
obtain similar result on the basis of maximum principle. 

Fig. 2 shows the trajectory of the process of circuit 

optimization in phase space of two variables 
1x , 2x , 

corresponding to the initial point ( 10x =1, 20x =1) that was 
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obtained with a main condition of the maximum principle 
(26). 

 

 
 

Fig. 2. Trajectories of optimization process in phase space for 

initial point 
10x =1, 20x =1. 

 
In this case the optimum trajectory corresponds to TSO 

and the constant value u=0. Thus the number of iterations is 
equal to 3719 and time of the CPU is equal to 20.45 msec. 
Changing of the initial point of S at any other positive values 

of coordinates 
1x , 2x , doesn't lead to change of a 

trajectory. However the negative value of coordinate 2x  

leads to essential change of the solution. The trajectories of 
process of circuit optimization corresponding to the initial 

point ( 10x =1, 20x = -1) are shown in Fig. 3. 

 

 
 

Fig. 3. Trajectories of optimization process in phase space for 

initial point 
10x =1, 20x = -1. 

 
 The structure of function u(t) that was obtained 
automatically and corresponds to a condition of the maximum 
principle (26) has one point of a rupture that corresponds to 
switching from the trajectory corresponding to MTSO (u=1, a 
dotted curve) on trajectory corresponding to TSO (u=0, a 
continuous curve). Coordinates of a point of switching of tsw 

depend on value of 20ψ . The data corresponding to points 1, 2, 

3, 4, 5, 6 and 7 in Fig. 3 are presented in Table I. 

Change of the value of 20ψ  from 40.0 till 14.35 leads to 

reduction of iterations number and CPU time from 19.62 ms to 

1.520 ms, but the CPU time is increasing later on. That is 
visible also in Fig. 4, where the dependence of CPU time of 

the solution of a task from initial value 20ψ  is shown. 

TABLE I. 

N 

           Data for different initial value 

             
 

2 0ψ  Iterations 

number 

        Time 

( ms ) 

        1     40.00 3568 19.620 

    2     30.00 3383 18.613 

    3     20.00 2790 15.351 

    4     16.00 1810 9.962 

    5     14.35 277 1.520 

    6     10.00 1152 6.310 

    7       2.00 1887 10.781 

 

 
 

Fig. 4. CPU time as function of parameter 20ψ .  

 

The value 
opt20ψ = 14.35 corresponds to the minimum 

CPU time Tmin and integral J, and is the same initial value of 

variable ( )t2ψ  which, according to the maximum principle, 

provides the maximum and constant value of a Hamiltonian of 
H. The gain in time computed as time relation for TSO by the 
minimum time of Tmin thus equal to 13.45 times. Dependences 

of the functions ( )t1ψ  and ( )t2ψ , and also a Hamiltonian of 

H(t) are presented in Fig. 5. 
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Fig. 5. Dependencies of ( )t1ψ , ( )t2ψ  and H(t) for optimal 

opt20ψ .  

Hamiltonian in this case is a constant and this fact 
corresponds to the maximum principle. It is interesting to 
analyze behavior of these functions with a non-optimal point 
of switching tsw of the control function u(t). Dependences of 
u(t) in change of tsw as parameter are presented in Fig. 6 and 
Fig. 7. 

 
 

Fig. 6. Dependencies of ( )t1ψ , ( )t2ψ  and H(t)  for 
20ψ < 

opt20ψ .  

 
 

Fig. 7. Dependencies of ( )t1ψ , ( )t2ψ  and H(t) for 
20ψ > 

opt20ψ .  

 
Hamiltonian is changing in time when the switching point 

is differing from the optimal one. This criterion can be the 
basic in practical search of the optimal control function. 

The analysis of optimization process of the presented 
circuit showed that application of the maximum principle 
really allows to find optimum structure of the control function 
u(t), by means of iterative procedure. Criterion of the end of 
procedure is an invariable value of a Hamiltonian. Thus 
considerable reduction of CPU time in comparison with 
traditional approach is observed. 

CONCLUSION 

The task of constructing a time-minimized algorithm can 
be adequately solved on the basis of control theory. The design 
process in this case is formulated as a controlled dynamic 
system.  

Analysis of the application of maximum principle to a 
problem of circuit optimization proves that the formerly 
studied effect of acceleration on the process of optimization 
appears owing to this principle. This means that the maximum 
principle of Pontryagin provides a theoretical justification for 
the acceleration effect that appears when we use the 
generalized formulation of process of circuit optimization. It is 
confirmed that the maximum principle allows for finding one 
or several local minima of the functional that is defined as the 
processor time. Aside from that, the use of the maximum 
principle provides the chance to significantly reduce the 
computing time for circuit optimization. 
 The analysis of optimization process of the presented 
circuit showed that application of the maximum principle 
really allows finding the optimum structure of the control 
vector U by means of iterative procedure. The solution to this 
problem allows you to build an algorithm for optimizing the 
system in minimal time. 
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