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Abstract:

The solution of a problem of analogue circuit optimization is mathematically defined as a controllable dynamic system. In this context the
minimization of the processor time of designing can be formulated as a problem of time minimization for transitional process of dynamic
system. A special control vector that changes the internal structure of the equations of optimization procedure serves as a principal tool for
searching the best strategies with the minimal CPU time. In this case a well-known maximum principle of Pontryagin is the best theoretical
approach for finding of the optimum structure of control vector. Practical approach for realization of the maximum principle is based on the
analysis of behaviour of a Hamiltonian for various strategies of optimization. It is shown that in spite of the fact that the problem of optimization
is formulated as a nonlinear task, and the maximum principle in this case isn't a sufficient condition for obtaining a minimum of the functional, it
is possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the best strategy found by means of
maximum principle compared with the traditional approach is equal two to three orders of magnitude.
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L.

The problem of reducing processor time spent on the
optimization of electronic circuits is one of the important
problems associated with improving the quality of design.
Some works devoted to this problem are devoted to how to
reduce the number of operations in solving two main
problems: circuit analysis and numerical optimization. Solving
these problems gives us a significant reduction in CPU time.
Methods that can be used in the analysis of complex systems
are being improved. Some ideas regarding the use of the
sparse matrix method [1-2] and decomposition methods [3]
are used to reduce the analysis time of circuits. Other
alternative methods such as homotopy methods [4] were
successfully applied for circuit analysis too.

Some methods of optimization were developed for circuit
designing, timing, and area optimization [5-6]. However,
classical deterministic optimization algorithms may have a
number of drawbacks: they may require that a good initial
point be selected in the parameter space, they may reach an
unsatisfactory local minimum, and they require that the cost
function be continuous and differentiable. To overcome these
issues, special methods were applied to determine the initial
point of the process by centering [7], or by applying geometric
programming methods [8].

Other formulation of the circuit optimization problem was
developed at a heuristic level some decades ago [9]. This
approach ignored Kirchhoff’s laws for all the circuit or part of
it. The practical aspects of this idea were developed for the
optimization of microwave circuits [10] and for the synthesis
of high-performance analog circuits [11] in case where all the
equations of the circuit model were not solved during the total
optimization process.

The new formulation of the problem of circuit optimization
is formulated in terms of the theory of optimal control [12-13].
In this case the process of circuit optimization was generalized
and defined as the dynamic controllable system. A basic
element is the control vector that changes the structure of the
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equations of system of optimization process. Thus there is a
set of the strategies of optimization that have different number
of operations and different processor time. Introduction of the
function of Lyapunov of the optimization process [14] allows
to compare various strategies of optimization and to choose
the best of them having the minimum processor time. At the
same time, the solution to the problem of finding the optimal
strategy and the corresponding optimal trajectory can be found
within the framework of the Pontryagin maximum principle
[15].

The main complexity of application of the maximum
principle consists of the search of initial values for auxiliary
variables at the solution of the conjugate system of equations.
Application of the maximum principle in case of linear
dynamic systems is based on the creation of an iterative
process [16-17]. In case of nonlinear systems, the convergence
of this process is not guaranteed. However, application of the
additional  approximating procedures [18-19] allows
constructing sequence of the solutions converging to a limit
under certain conditions.

Section 2 gives the formulation of the circuit optimization
process based on the methods of control theory using a control
vector. Section 3 gives an example of the application of the
maximum principle for optimizing the simplest nonlinear
circuit. It is shown that analysis of the Hamiltonian behaviour
allows one to obtain the exact structure of a control vector that
minimizes processor time.

IL.

Before you begin to format your paper, first write and save
the content as a separate text file. We define the optimization
process for analog circuit as the problem of minimization of
the generalized cost function F(X,U) by the equation (1) with
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the constraints (2):
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XM =X"+tH , )]

(-u)e,(X)=0,j=12,..M, ()
where XeRY, X = (X’,X”), X'e R¥, is the vector of the

independent variables and the vector X”e R" is the vector
of dependent variables (N =K+ M), s is the iterations number,

t is the iteration parameter, 7 € R', g (X) presents the

equation j of the circuit’s model, H=H(X,U) is the direction
of the generalized cost function F(X,U) decreasing, U is the
vector of the special control functions U=(u,,u,,....u,, ), Where

u,eQ, Q= {0;1}. The generalized cost function F(X,U) is

defined as:
F(X,U)=C(X)+ ¢(X,U) 3)

where C(X) is the non-negative cost function of the designing
process, and (X ,U ) is the additional penalty function:

Mk

o(X.U)=—2u; g;(X): @

o [ —

1

~.
I

By means of this formulation we redistribute the computer
time expense between the solution of problem (2) and the
optimization procedure (1) for the function F (X ,U ). The

control vector U is the main tool for the redistribution process
in this case. The problem of search of the optimal design
strategy with a minimal CPU time is formulated as the typical
problem for the functional minimization of the control theory.
The functional that needs to minimize is the total CPU time T
of the design process. This functional depends on the
operations number and on the strategy of designing that has
been realized. The main difficulty of this definition is
unknown optimal dependencies of all control functions u;.

The Eq.(1) can be replaced by the differential equation in
continuous form using the next formula:

dx,
dt

= f(X,U), i=12...N, ()

The equations (2), (3), (4) and (5) compose the continuous
form of the design process. The functions of the right hand
part of the system (5) can be determined for example for the
gradient method by means of the next expression:

0

X, U)=~u,_ , —
f[( ) udex[

i=12,...K, (6)

F(X,U) i=12,...K

i—

(X, U)=—u_, %F(x,U)
DL 0}
i=K+1L,K+2,....N, 6"
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where the operator ¢ / dx; hear and below means
0 do(X) KM do(x) dx, s .
—_ X)= —=~ _r - -7, X; 18
ox, ¢ (X) dx, " FZK:H dx, Jx,
equal to X, (t—dt): n,(X) is the implicit function
(x, =n(X)) that is determined by system (2).

The control variables u; have the time dependency in

general case. The equation number j is removed from (2) and
the dependent variable X, ; is transformed to the independent

when u;=1. This independent parameter is defined by the

formulas (5), (6). In this case there is no difference between
formulas (6) and (6'). The transformation of the vectors X’
and X ” can be done at any time moment.

We need to find the optimal behavior of the control
functions u; during the optimization process to minimize the

total computer time of designing. The more adequate method
for solution of this problem is the maximum principle of
Pontryagin.

III. MAXIMUM PRINCIPLE APPLICATION

The main complexity of application of the maximum
principle consists of the search of initial values for auxiliary
variables at the solution of the conjugate system of equations.
Application of the maximum principle for the linear dynamic
systems is based on creation of iterative process [16].

In case of nonlinear systems the convergence of this
process isn't guaranteed, however application of the additional
approximating procedures [17-19] allows constructing
sequence of the solutions meeting to a limit under certain
conditions. In the present work the possibility of application of
the maximum principle for creation of the optimal control
vector and the optimal trajectory of optimization process
corresponding to it is investigated. The example of
optimization of the simplest nonlinear circuit for which the
analytical solution of the task was obtained is investigated. We
will consider a nonlinear circuit of a voltage divider in Fig. 1.

Fig. 1. Simplest nonlinear circuit of voltage divider.

Let us consider that the nonlinear element has the
following dependence:

R =a+b(V,-V,), )

where a>0, b>0, a>b, V0 and V1 the voltages on an entrance

and an exit of circuit.
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We will consider that V,, is equal 1. We will define the
variables x1, x2. X, = R, x, =V,. Thus the vector of phase

variables X € R*. In this case the formula (7) can be
replaced with the following expression:

R”=a+b(x2—1). 8)
We can present the equation of a circuit in the form:
g1(x1’x2)5x2[x1+a+b(x2_1)]_x1:O 9)

The circuit optimization problem is formulated as the
problem of obtaining a given voltage w at node 1. Let us
define the cost function of the optimization process using the

formula:
(xz - W)z .

In this case the problem of circuit optimization is
converted to minimization of the cost function C(X).

c(x) (10)

Following theoretical basis, that were developed in [12], we
formulate the problem for circuit optimization as a task of
search of the optimization strategy with a minimum possible
CPU time. For this purpose we define the functional, which is
subject to minimization, by the following expression:

T

[ fo(x) d.

0

J

(1D

where  f, (X) the function which is conditionally

determining density of number of arithmetic operations in unit
of time of . In that case, the integral (5) defines total number
of operations necessary for circuit optimization and is
proportional to the total CPU time.

The structure of function f (X) can't be defined;

however we can compute CPU time, using possibilities of the
compiler. We will identify further the integral (11) with CPU
time and therefore the problem of minimization of CPU time
corresponds to a problem of minimization of the integral (11).

According to [12] we introduce the control vector U that
consists of only one component «(¢) for the reviewed example.
This component has one of two possible values: O or 1. The
control vector allows to generalize the circuit optimization
process and to define a set of the optimization strategies
differing in operations number and CPU time. The generalized
cost function can be defined in this case by means of the
formula:

F(X)=C(X)+ ¢o(X), (12)

where ¢(X ) is an additional penalty function, which can be
determined, for example, by the following formula:

(13)

558

where M is the number of nodes of the circuit. In our case
M=1. The process of circuit optimization thus can be
described by the system (14) with restrictions (15):

dx,

r = fi(xl’XZ’u)’ i=1,2,

(14)

(1-u)g,(x,x,)=0, (15)

where functions fi(xl,xz,u) are defined by a concrete

numerical method of optimization. When using a gradient
method these functions are defined by the following formulas:

S p(x). i

-2 F
ox,

1

£, x,u) = 1,2. (16)

The value u(#)=0 corresponds to the traditional strategy of
optimization (TSO). In this case in system (14) there is only
one equation for the independent x; variable while the variable
x> is defined from the equation (15). The value u(t)=1
corresponds to the modified traditional strategy of
optimization (MTSO) when both x; and x» variables are
independent. In this case the system (14) includes two
equations for the independent variables x; u x>, and the
equation (15) disappears. Change of the value of function u(?)
with 0 on 1 and back can be made at any moment, and
generates a set of various strategies of optimization. Two main
strategies of structural basis can be defined by means of the
next two approaches.

1) TSO, u=0. The equations (14), (16) are replaced with the
following equations:

dx,  dC dx, (17)
dt dx, dx,
dx,(x,.1) _ 0x, dx, (18)

dt dx, dt

where the derivative dx, /dx, is defined from the equation (9),

1
2b

X, +c+2b
\/(xl + c)2 + 4bx,

2) MTSO, u=1. The equations (14) are transformed to the next
one:

and &_

dx,

, c=a-b.

dx; _

= (19)
dt

s e gk

In general case the right hand parts of the equations (14)
can be presented in the form:

fl(xl’xz’u):(l_u)’fu(xvxz)"'u’flz(xl’xz)’
(20)

Ll x,u)=(1=u)- f,(x.2,)+u- £, (x. %),
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where the functions £, (x,,x,) are determined by the

following formulas:

w—x
fu(xwxz):( 2) -1+ >
b (x1+c) +4bx,

i) =20, = (o, 1), +a+lx, ~ 1)} }

2

x,+c+2b

2n

(W—zxz) 1t xl+az+b
2b (x, +c) +4bx,
Foolx,x,) ==2{(x, — W)+ (c+ x, +2bx,)
[(x, =Dx, +ax, +b(x, —)x,]}
According to methodology of the maximum principle, the
system of the conjugate equations for additional variables

V¥ ,,¥ , hasthe next form:
dy, :_afl(xl,xz,u)w ~ afz(xl,xz,u)'y/ ’
dt ox, : ox, ?

le(xl,xz)z

(22

dy, __aﬁ(xl’xz’”) _afz(xvxz’”)
= } e 3
dt ox, ox,
where the partial derivatives of functions f; ()c1 , Xy, U ), i=1,

2 can be calculated by formulas (20), (23).

afu(xl,xz): (x, —w)da
ox, [(x1+c)2+4bx1] ¥
ad ,
fip (%1, x,) =-2(x, 1)
ox,
@le(xl’xz) :_(W_x2) 1+ X +ath
ox, b (xl + C)z +4bx,
' 4a
[+ 6] ™
M =-2{(x, = Dx, +[a+b(x, - 1)]x,
ox,
+(c+x, +2bx,)(x, = 1)}
(23)
M:_l 14 x,ta+b
ox, b (x, + ) + 4bx,
M =—4(x, —1)x, =2[a+b(x, —1)]x,
ox,
—2(x, —1)bx, +a+b(x, —1)]
2
M__i B x+a+b
ox, 2b° (x, +c) +4bx,

X1
fﬂgl’”) =214 2b[(x, — Dx, +bx> +cx, |
2
+(c+x +2bx2)2}
The Hamiltonian is expressed by the following formula:

H:V/l'ﬁ(xl’xz’”)+l//z'fz(xl’xz’”) (24)

Substituting (14) in (17) and (18) and doing identical
transformations we obtain the following expression for a
Hamiltonian:

H=y, 'fll(xl’x2)+V/2'le(xl’xz)

(25)
+”'(I)(x1’x2’§//1’l//2)

where

q)(xvxz’l//pl//z):l/ﬁ ‘[flz(xvxz)_fn(xvxz)]
ty,- [fzz(xpxz)_fm(xnxz)].

According to the maximum principle, we obtain the next
main condition for the control function u:

0, D <0
u= (26)
{1, D >0

The behavior of the control function u(?) that corresponds
to the maximum principle is defined also by behavior of
functions i, (¢) and y, (), which are computed from the
equations (22). At the same time the solution of the equations
(22) depends on initial values ¥,, and ¥ ,,, which are
defined within the precision of common multiplier. One of
these constants can be taken arbitrary. Let us define the
constant ¥, =—1. The value of ¥, that corresponds to the
adequate solution of a task in the conditions of the maximum
principle can be obtained by iterative procedure. We use
iterative procedure on the basis of the Newton method that
provides the solution for the minimum time.

The analysis of optimization process for a similar example
which is carried out in work [17] showed that the TSO (u=0)

is optimal one when initial values of variables x, and X, ,
(x,0 »X, ) are positive. At the same time the negative initial
values of the variable x, leads to significantly other results. In

case of negative initial values of variable X,, , emergence of

effect of acceleration of the process of circuit optimization is
possible. This effect accelerates the optimization process in
some times. It is interesting to check, whether it is possible to
obtain similar result on the basis of maximum principle.

Fig. 2 shows the trajectory of the process of circuit

optimization in phase space of two variables x, , X, ,

corresponding to the initial point ( x,, =1, X,y =1) that was
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obtained with a main condition of the maximum principle
(26).

X, S
15T b
u=0
0 I
06 X

Fig. 2. Trajectories of optimization process in phase space for
initial point x, =1, x,, =1.

In this case the optimum trajectory corresponds to TSO
and the constant value u#=0. Thus the number of iterations is
equal to 3719 and time of the CPU is equal to 20.45 msec.
Changing of the initial point of S at any other positive values

of coordinates x, ,X, , doesn't lead to change of a

trajectory. However the negative value of coordinate X,

leads to essential change of the solution. The trajectories of
process of circuit optimization corresponding to the initial

point ( x,, =1, Xx,, = -1) are shown in Fig. 3.

X5
t
A
0 }
‘lL 06 X,
765“ t

—

1 s

Fig. 3. Trajectories of optimization process in phase space for
initial point x, =1, X,, =-1.

The structure of function wu(z) that was obtained
automatically and corresponds to a condition of the maximum
principle (26) has one point of a rupture that corresponds to
switching from the trajectory corresponding to MTSO (u=1, a
dotted curve) on trajectory corresponding to TSO (u=0, a
continuous curve). Coordinates of a point of switching of f
depend on value of ¥/,,. The data corresponding to points 1, 2,
3,4,5,6and 7 in Fig. 3 are presented in Table L.

Change of the value of ¥, from 40.0 till 14.35 leads to

reduction of iterations number and CPU time from 19.62 ms to
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1.520 ms, but the CPU time is increasing later on. That is
visible also in Fig. 4, where the dependence of CPU time of

the solution of a task from initial value ¥, is shown.

TABLEI
Data for different initial value
N ‘// Iterations Time
20 number (ms)
1 40.00 3568 19.620
2 30.00 3383 18.613
3 20.00 2790 15.351
4 16.00 1810 9.962
5 14.35 277 1.520
6 10.00 1152 6.310
7 2.00 1887 10.781
T
msec
20 +
15 1
10 1
5 -+
t t t t
0 10.0 200 30.0 40.0 VY,

Fig. 4. CPU time as function of parameter {/ ,, .

The value ¥ ,,,, = 14.35 corresponds to the minimum

CPU time Tmin and integral J, and is the same initial value of
variable ¥, (1) which, according to the maximum principle,
provides the maximum and constant value of a Hamiltonian of
H. The gain in time computed as time relation for TSO by the
minimum time of Ty, thus equal to 13.45 times. Dependences
of the functions i/, (t) and w, (1), and also a Hamiltonian of

H(t) are presented in Fig. 5.
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Y, ¥, ¥, =14.35
80+ 1

60+
401

20T

0 ==

msec

204

401

Fig. 5. Dependencies of ¥, (t) , W, (t) and H(t) for optimal
WZOUpt .

Hamiltonian in this case is a constant and this fact
corresponds to the maximum principle. It is interesting to
analyze behavior of these functions with a non-optimal point
of switching #. of the control function u(z). Dependences of
u(t) in change of t, as parameter are presented in Fig. 6 and
Fig. 7.

RN ¥»=10.35 /
801 /
/vy,
60T H /
il /
40 Y
201 7
0 : : : / —
w3 4 ° 6 m-!:!.-ec
201 v,
401

Fig. 6. Dependencies of i, (1), v, (t) and H(1) for W <

l// 20 opt *
Y WAH ¥,,=15.35 //
1 H /
100 /
751 /
/
50+

251

Fig. 7. Dependencies of i, (t), v, (t) and H(t) for y o >

l// 20 opt *
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Hamiltonian is changing in time when the switching point
is differing from the optimal one. This criterion can be the
basic in practical search of the optimal control function.

The analysis of optimization process of the presented
circuit showed that application of the maximum principle
really allows to find optimum structure of the control function
u(t), by means of iterative procedure. Criterion of the end of
procedure is an invariable value of a Hamiltonian. Thus
considerable reduction of CPU time in comparison with
traditional approach is observed.

CONCLUSION

The task of constructing a time-minimized algorithm can
be adequately solved on the basis of control theory. The design
process in this case is formulated as a controlled dynamic
system.

Analysis of the application of maximum principle to a
problem of circuit optimization proves that the formerly
studied effect of acceleration on the process of optimization
appears owing to this principle. This means that the maximum
principle of Pontryagin provides a theoretical justification for
the acceleration effect that appears when we use the
generalized formulation of process of circuit optimization. It is
confirmed that the maximum principle allows for finding one
or several local minima of the functional that is defined as the
processor time. Aside from that, the use of the maximum
principle provides the chance to significantly reduce the
computing time for circuit optimization.

The analysis of optimization process of the presented
circuit showed that application of the maximum principle
really allows finding the optimum structure of the control
vector U by means of iterative procedure. The solution to this
problem allows you to build an algorithm for optimizing the
system in minimal time.
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