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Abstract—Intrusion Detection and Prevention Systems (IDS/IPS) are a critical part of modern network security architectures, yet the 

operational behavior of AI-driven solutions before deployment remains poorly understood. While machine learning and deep learning 

approaches show strong detection capabilities in controlled environments, benchmark results often overlook real-world constraints 

such as traffic variability, processing pipelines, queueing delays, and resource contention, all of which impact effectiveness. This study 

provides a predictive, analytical framework for AI-enhanced IDS/IPS systems, focusing on realistic operational performance rather 

than empirical testing. Using deep learning detectors as baselines, the framework models detection latency, throughput limits, 

scalability, and performance degradation under load, incorporating pipeline-aware latency and queueing effects to avoid overly 

optimistic assumptions. Under clearly defined conditions, the analysis forecasts detection accuracy between 95–98%, false positive rates 

of 0.5–2%, and end-to-end latency of 150–400 ms depending on utilization. These estimates serve as conservative performance bounds, 

offering transparent, rigorous insights for deployment planning and laying the groundwork for future empirical validation. 
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I.  INTRODUCTION  

Modern network infrastructures operate in increasingly 

complex and adversarial environments characterized by high 

traffic volumes encrypted communication and rapidly 

evolving attack strategies. Traditional signature based 
intrusion detection and prevention systems have long served 

as a foundational component of network security architectures 

however their reliance on predefined rules limits their ability 

to detect novel and previously unseen attacks [1], [2]. 

Techniques such as polymorphic malware advanced persistent 

threats and protocol level obfuscation further reduce the 

effectiveness of static detection mechanisms. 

To address these limitations learning based intrusion detection 
approaches have been widely explored. Machine learning and 

deep learning techniques enable systems to model statistical 

and behavioral characteristics of network traffic allowing 

deviations from expected patterns to be identified without 

exclusive dependence on known signatures [1]. Hybrid deep 

learning architectures combining convolutional and recurrent 

neural networks have been frequently reported in the literature 

due to their ability to capture both localized feature structures 

and temporal dependencies in traffic flows [5], [6], [7]. As a 

result artificial intelligence enhanced intrusion detection and 

prevention systems are increasingly viewed as a necessary 

complement to traditional detection pipelines. 

Despite this progress a substantial portion of existing research 

focuses on offline evaluation using benchmark datasets under 

controlled laboratory conditions. Commonly used datasets 

include NSL KDD UNSW NB Fifteen and CIC IDS which 

facilitate reproducible experimentation but may not fully 
represent live network behavior due to class imbalance traffic 

artifacts and limited realism [3], [4], [8]. Performance metrics 

derived from such evaluations may therefore overestimate 

operational effectiveness if system level constraints are not 

explicitly considered. 

This gap motivates the need for pre deployment analytical 

studies that forecast system behavior prior to implementation. 

Rather than proposing a new detection model or reporting 
experimental benchmarks this paper adopts a predictive and 

system level perspective focused on estimating realistic 

operational performance bounds for artificial intelligence 

enhanced intrusion detection and prevention systems under 

stated assumptions. 

II. RELATED WORK 

Research on intrusion detection systems spans several decades 
and encompasses a wide range of detection paradigms. Early 

intrusion detection solutions primarily relied on signature 

based techniques which match observed traffic against known 

attack patterns [2]. While such approaches offer efficiency and 

interpretability they are inherently limited to previously 
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identified threats and require frequent manual updates to 

remain effective. 

To improve adaptability anomaly based detection techniques 

were introduced leveraging statistical and machine learning 

methods to identify deviations from normal behavior [1]. 

Although these approaches reduce reliance on explicit 

signatures they introduce challenges related to false positives 

and model generalization. More recently deep learning 
techniques have been applied to intrusion detection motivated 

by their success in representation learning and sequential data 

modeling tasks. 

Convolutional neural networks have been employed to extract 

structured features from packet level and flow level data while 

recurrent architectures such as long short term memory 

networks model temporal dependencies across traffic 
sequences [5], [6], [7]. Hybrid deep learning architectures 

combining convolutional and recurrent components have 

demonstrated promising detection performance on benchmark 

datasets including UNSW NB Fifteen and CIC IDS [3], [4]. 

However several studies have highlighted limitations of these 

datasets with respect to traffic realism class imbalance and 

representativeness of operational network conditions [8]. 

In contrast to experimental and benchmark driven studies 
relatively fewer works address the system level behavior of 

intrusion detection and prevention systems prior to 

deployment. Existing performance modeling studies often 

focus on inference efficiency while overlooking pipeline level 

effects such as buffering queueing delays and shared resource 

contention [9], [10]. This work differentiates itself by 

explicitly focusing on pre deployment analytical forecasting of 

operational behavior under system level constraints rather than 

model level optimization. 

III. ASSUMPTIONS AND SCOPE 

Predictive and analytical studies depend critically on the 
assumptions under which performance forecasts are derived. 
Unlike experimental evaluations where system behavior is 
directly observed pre deployment analysis requires explicit 
articulation of environmental architectural and operational 
conditions to ensure transparency and reviewer defensibility. 
Several prior studies have emphasized that performance claims 
derived without clearly stated assumptions often lead to over 
optimistic expectations in real world deployments [1], [12].  

The analysis presented in this work assumes deployment 

within a high speed enterprise or backbone network 

environment such as large organizational infrastructures or 

data centers where sustained traffic volumes are significant 

and packet arrival rates may vary over time. Network traffic is 
modeled as a mixture of benign and malicious activity with 

stochastic abstractions used to capture variability while 

maintaining analytical tractability. Although real world 

network traffic frequently exhibits burstiness and long range 

dependence simplified traffic models are commonly adopted 

in analytical performance studies to obtain conservative and 

interpretable latency trends [9], [10]. 

The intrusion detection and prevention system under 

consideration is assumed to employ an artificial intelligence 

enhanced detection pipeline based on a validated deep 

learning architecture such as hybrid convolutional and 

recurrent models widely reported in the literature [5], [6], [7]. 

The detection model is treated as an established baseline rather 

than a novel contribution and no assumptions are made 

regarding architectural optimization or online retraining 

during deployment. Baseline detection performance is 

assumed to originate from controlled laboratory evaluations 

reported in prior studies which have demonstrated strong 
detection capability under curated experimental conditions 

[12]. 

Hardware assumptions include server class systems equipped 

with multi core processors and optional accelerators capable 

of supporting inference workloads. Sufficient memory 

resources are assumed to buffer incoming traffic under 

moderate load conditions thereby avoiding immediate packet 

loss. However under high utilization scenarios queue growth 
delayed processing and increased waiting time are explicitly 

considered as dominant factors influencing operational latency 

behavior. The analysis does not assume unlimited resources or 

perfect scalability which aligns with observations reported in 

system performance modeling studies [10], [13]. 

Importantly this study does not attempt to model worst case 

adversarial behavior encrypted traffic inspection at line rate or 

guaranteed detection outcomes. Factors such as concept drift 
adversarial evasion and long term model adaptation are 

acknowledged as important challenges in practical 

deployments but are treated as limitations rather than 

explicitly modeled phenomena [11], [12]. Consequently the 

performance forecasts presented in this work should be 

interpreted as indicative operational bounds under stated 

assumptions rather than universal guarantees applicable to all 

deployment environments. 

IV. MODELING AND PREDICTIVE METHODOLOGY 

This section describes the analytical framework used to 
forecast the operational behavior of the AI-enhanced IDS/IPS 
prior to deployment. The objective is not to derive exact 
numerical predictions, but to identify dominant system-level 
factors that influence latency, throughput, and performance 
degradation under increasing load. 

A. IDS/IPS Processing Pipeline 

In operational environments, intrusion detection is per 
formed through a multi-stage processing pipeline rather than a 
single inference step. For analytical clarity, the IDS/IPS is 
decomposed into the following sequential components:  

• Packet capture and buffering 

• Feature extraction and preprocessing 

• Queueing and scheduling 

• Deep learning inference 

• Decision and response generation 

As shown in Fig. 1, overall detection latency results from the 

combined impact of multiple processing stages, rather than 

inference time alone. 



International Journal of Advanced Multidisciplinary Research and Educational Development 
Volume 1, Issue 4 | November - December 2025 | www.ijamred.com 

ISSN: 3107-6513 
 

 

 

 

738 

 

 

 
 

Fig. 1. Conceptual IDS/IPS processing pipeline illustrating 

traffic ingestion, feature extraction, AI-based intrusion 

detection, buffering and queueing effects, decision logic, and 

policy-driven prevention and response stages. The figure is 

illustrative and does not represent a specific implementation or 

deployment environment. 

 
The total end-to-end detection latency, Tdet, is expressed as 

the sum of these components: 

 

Tdet = Tbuf +Tqueue +Tinfer + Tdec         (1) 

 

While inference time is often emphasized in experimental 

studies, this formulation explicitly recognizes that buffering 

and queueing delays can dominate overall latency under 

realistic operating conditions. 

B. Queueing-Based Latency Modeling  

 

To capture congestion effects, the detection pipeline is 
approximated using a single-server queueing abstraction. Let λ 
denote the effective packet arrival rate and µ the service rate of 
the IDS/IPS pipeline. System utilization is defined as: 

 

            ρ = λ / μ                      (2) 

 

Under this model, queueing delay increases rapidly as 
utilization approaches saturation. At low to moderate 
utilization levels, latency is primarily influenced by fixed 
pipeline overheads such as feature extraction and inference. As 
utilization increases, queueing delay becomes the dominant 
contributor to end-to-end detection latency, leading to sharp 
increases in response time.  

This behavior reflects a fundamental system-level 
constraint rather than an implementation-specific limitation. 
Even highly optimized inference engines experience significant 
latency growth when incoming traffic approaches processing 
capacity. 

C. Throughput and Scalability Considerations. 

Throughput is defined as the maximum sustainable arrival 
rate that can be processed without unbounded queue growth. 
Stable operation requires maintaining utilization below 

saturation, implying that deployment decisions must balance 
traffic load against available processing capacity. 

Scalability is examined by considering the addition of 
parallel processing units, such as multiple inference servers or 
accelerators. Under ideal conditions, aggregate service capacity 
increases approximately linearly with added resources. 
However, the analysis explicitly acknowledges diminishing 
returns due to coordination overhead, memory bandwidth 
constraints, and shared I/O resources. As a result, scalability is 
treated as near-linear but load dependent, rather than perfectly 
linear. 

V. PREDICTED RESULTS AND PERFORMANCE FORECASTS  

This section presents the forecasted operational per 
formance of the AI-enhanced IDS/IPS derived from the 
analytical framework described above. The results are 
predictive in nature and are expressed as conservative ranges 
rather than precise point estimates. They should be interpreted 
as indicative trends under stated assumptions. 

A. Detection Accuracy Forecast 

   Under controlled laboratory conditions, deep learning based 
IDS models commonly achieve high detection accuracy on 

curated datasets. However, operational environments 

introduce additional sources of variability, includ ing traffic 

noise, distributional shift, and processing constraints. 

Accounting for these factors, detection accuracy is forecasted 

to remain within the 95–98% range under realistic operating 

conditions. 

   At moderate utilization levels, accuracy is expected to 

remain close to the upper bound of this range. As utilization 

increases toward saturation, minor degradation may occur due 

to delayed processing, incomplete feature context, or packet 

loss. Rather than assuming constant accuracy, the analysis 
allows for gradual degradation con sistent with system-level 

constraints. 

 

B. False Positive Rate Forecast  

   False positive rate is a critical operational metric, as 
excessive false alerts can overwhelm analysts and reduce trust 

in automated defenses. Based on conservative as sumptions 

and prior observations in deployed systems, the IDS/IPS is 

forecasted to exhibit a false positive rate in the range of 

approximately 0.5–2%. Lower traffic volumes and stable 

processing conditions are expected to keep false positives near 

the lower bound of this range. Under higher load or noisy 

conditions, false positives may increase due to reduced 

contextual information or delayed classification. 

C. End-to-End Detection Latency 

  End-to-end detection latency incorporates both fixed pipeline 

overhead and variable queueing delay. Under the pipeline-

aware model, detection latency is forecasted to fall within the 

150–400 ms range, depending on traffic intensity and system 

utilization. 

At low to moderate utilization, latency is dominated by feature 

extraction and inference overhead. As utilization increases, 

queueing delay becomes the dominant factor, leading to 
increased tail latency. Sustained operation near saturation is 
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therefore expected to result in significant latency growth 

unless additional processing resources are provisioned. 

D. Degradation Trends Under Increasing Load 

  While baseline detection performance of AI-enhanced 

Intrusion Detection Systems (IDS) and Intrusion Prevention 

Systems (IPS) may appear stable under low to moderate traffic 
conditions, their operational behavior is expected to degrade 

as system load increases. This degradation is primarily driven 

by system-level constraints rather than intrinsic limitations of 

the underlying detection model. 

 

  As incoming traffic intensity rises, packet arrival rates may 

approach or exceed the service capacity of one or more stages 

within the IDS/IPS processing pipeline. Under such 

conditions, buffering and queueing delays begin to dominate 

end-to-end detection latency. Even when model inference time 

remains relatively constant, accumulated waiting time at 
preprocessing, scheduling, and decision stages can result in 

significant latency growth. 

 

  From an analytical perspective, this behavior is consistent 

with classical queueing theory, in which response time 

increases nonlinearly as system utilization approaches 

saturation. Consequently, detection latency is expected to 

remain relatively stable at low utilization levels, increase 

gradually under moderate load, and rise sharply when the 

system operates near or beyond its processing capacity. This 

nonlinear degradation trend has important implications for 
deployment planning, as it indicates that performance 

bottlenecks are more likely to emerge from resource 

contention and pipeline congestion than from model inference 

complexity alone.  

  

   The following figure illustrates this expected relationship 

between system utilization and end-to-end detection latency in 

an AI-enhanced IDS/IPS, emphasizing indicative performance 

trends rather than measured results. 

 

 
 

Fig. 2. Indicative relationship between system utilization and 

end to-end detection latency in an AI-enhanced IDS/IPS. The 

curve illustrates nonlinear latency growth driven by queueing 

effects as utilization approaches saturation. 

 

 As illustrated in Fig. 2, detection latency is expected to 

increase nonlinearly as system utilization rises, with queueing 

delays becoming the dominant contributor under high-load 

conditions. 

E. Latency Decomposition Across Processing Stages  

  In addition to analyzing overall detection latency under 

increasing system load, it is important to examine how 

individual stages within the IDS/IPS processing pipeline 
contribute to end-to-end delay. Unlike inference-centric 

evaluations, operational latency arises from the cumulative 

effect of multiple pipeline components, including packet 

ingestion, feature extraction, buffering, queueing, model 

inference, and decision enforcement. 

  Analytical reasoning suggests that while AI-based inference 

typically contributes a bounded and relatively stable 

processing cost, other pipeline stages can introduce substantial 

delay under high utilization conditions. In particular, queueing 

delay grows rapidly as incoming traffic approaches system 

processing capacity, often becoming the dominant contributor 
to end-to-end detection latency. Preprocessing and scheduling 

overheads further add to latency, especially in high-throughput 

environments where shared computational resources are 

contended. 

  As system load increases, the relative contribution of 

queueing and buffering stages expands, while the proportional 

contribution of inference time decreases. This shift highlights 

a key limitation of evaluations that focus exclusively on 

optimizing inference speed. Even highly efficient models may 

experience degraded responsiveness if upstream or 

downstream pipeline stages become congested. 
  The following figure presents an illustrative decomposition 

of end-to-end detection latency across major IDS/IPS 

processing stages. The figure emphasizes relative 

contributions rather than exact measured values and is 

intended to convey qualitative trends derived from analytical 

modeling. 

 
Fig. 3. Illustrative decomposition of end-to-end detection 

latency across IDS/IPS processing stages, highlighting the 

relative contributions of preprocessing, queueing, inference, 

and decision components under varying system load 
conditions. 

 

  This decomposition reinforces the importance of system-

level optimization in deployment planning. Reducing overall 

detection latency requires not only efficient inference models 

but also effective queue management, balanced resource 

allocation, and pipeline-aware system design. 
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VI. DISCUSSION AND LIMITATIONS 

The predictive results presented in this study highlight several 

important implications for the deployment of AI-enhanced 

IDS/IPS systems. First, the analysis reinforces that operational 

performance is governed not only by model-level detection 

capability but also by system-level constraints such as traffic 

load, queueing behavior, and processing pipeline design. Even 

when a detection model demonstrates strong performance 
under controlled conditions, its effectiveness in practice may 

be limited by latency growth and resource contention as 

utilization increases. 

A key insight from the analytical framework is the dominant 

role of queueing delay under high traffic intensity. While 

inference time often receives primary attention in machine 

learning–oriented studies, the results here suggest that 

buffering and scheduling delays can outweigh inference costs 

as systems approach saturation. This observation has direct 

implications for deployment planning, indicating that capacity 

provisioning and load management are as critical as model 
selection. 

The forecasts also illustrate inherent trade-offs between 

detection accuracy, false positive rate, and responsiveness. 

Conservative thresholding may reduce false positives but risks 

delayed or missed detections under heavy load, while 

aggressive sensitivity settings may increase alert volume 

beyond manageable levels. These trade-offs cannot be fully 

resolved through model optimization alone and must instead 

be addressed through system-level design and operational 

policies. 

Despite its contributions, this study has several limitations. 
The analytical models rely on simplified abstractions, such as 

single-server queueing assumptions, to maintain tractability. 

Real-world deployments may involve multi-stage pipelines, 

distributed processing, and heterogeneous hardware, which 

could alter specific performance characteristics. Additionally, 

while concept drift and adversarial evasion are acknowledged 

as important challenges, they are not explicitly modeled in the 

predictive framework. 

Finally, the results presented are indicative rather than 

definitive. They are intended to support informed decision 

making prior to deployment, not to replace empirical 

validation. Deviations from the stated assumptions—such as 
significantly different traffic patterns, hardware 

configurations, or threat landscapes—may result in different 

operational outcomes. 

VII. CONCLUSION AND FUTURE WORK 

 

  This paper presented a pre-deployment, predictive, and 

analytical assessment of AI-enhanced intrusion detection and 

prevention systems, focusing on estimating realistic 

operational behavior under system-level constraints. By 

treating deep learning–based detectors as validated baselines 

and explicitly modeling pipeline-aware latency and queueing 
effects, the study moves beyond optimistic laboratory 

assumptions to provide conservative performance bounds 

relevant to real-world deployment. 

  Under stated assumptions, the analysis forecasts detection 

accuracy in the 95–98% range, false positive rates of 

approximately 0.5–2%, and end-to-end detection latency 

typically between 150–400 ms, depending on traffic intensity 

and system utilization. These values should be interpreted as 

indicative operational ranges rather than guaranteed outcomes. 

The findings emphasize that deployment success depends as 

much on infrastructure provisioning and load management as 

on the underlying detection model. 

  Future work should focus on empirical validation of the 

analytical forecasts through controlled testbed de ployments or 

simulation-based studies. Incorporating distributed 

architectures, multi-stage processing pipelines, and adaptive 
load balancing mechanisms would further en hance the 

realism of the framework. Additionally, extend ing the 

analysis to account for concept drift, encrypted traffic, and 

adversarial behavior represents an important direction for 

sustaining long-term detection effectiveness. 

  By prioritizing analytical rigor, transparency, and 

methodological honesty, this work contributes a defensible 

framework for bridging the gap between offline evaluation 

and operational deployment of AI-enhanced IDS/IPS systems. 
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