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Abstract—Intrusion Detection and Prevention Systems (IDS/IPS) are a critical part of modern network security architectures, yet the

operational behavior of Al-driven solutions before deployment remains poorly understood. While machine learning and deep learning

approaches show strong detection capabilities in controlled environments, benchmark results often overlook real-world constraints

such as traffic variability, processing pipelines, queueing delays, and resource contention, all of which impact effectiveness. This study

provides a predictive, analytical framework for AI-enhanced IDS/IPS systems, focusing on realistic operational performance rather

than empirical testing. Using deep learning detectors as baselines, the framework models detection latency, throughput limits,

scalability, and performance degradation under load, incorporating pipeline-aware latency and queueing effects to avoid overly

optimistic assumptions. Under clearly defined conditions, the analysis forecasts detection accuracy between 95-98 %, false positive rates

of 0.5-2%, and end-to-end latency of 150-400 ms depending on utilization. These estimates serve as conservative performance bounds,

offering transparent, rigorous insights for deployment planning and laying the groundwork for future empirical validation.
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I. INTRODUCTION

Modern network infrastructures operate in increasingly
complex and adversarial environments characterized by high
traffic volumes encrypted communication and rapidly
evolving attack strategies. Traditional signature based
intrusion detection and prevention systems have long served
as a foundational component of network security architectures
however their reliance on predefined rules limits their ability
to detect novel and previously unseen attacks [1], [2].
Techniques such as polymorphic malware advanced persistent
threats and protocol level obfuscation further reduce the
effectiveness of static detection mechanisms.

To address these limitations learning based intrusion detection
approaches have been widely explored. Machine learning and
deep learning techniques enable systems to model statistical
and behavioral characteristics of network traffic allowing
deviations from expected patterns to be identified without
exclusive dependence on known signatures [1]. Hybrid deep
learning architectures combining convolutional and recurrent
neural networks have been frequently reported in the literature
due to their ability to capture both localized feature structures
and temporal dependencies in traffic flows [5], [6], [7]. As a
result artificial intelligence enhanced intrusion detection and
prevention systems are increasingly viewed as a necessary
complement to traditional detection pipelines.
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Despite this progress a substantial portion of existing research
focuses on offline evaluation using benchmark datasets under
controlled laboratory conditions. Commonly used datasets
include NSL KDD UNSW NB Fifteen and CIC IDS which
facilitate reproducible experimentation but may not fully
represent live network behavior due to class imbalance traffic
artifacts and limited realism [3], [4], [8]. Performance metrics
derived from such evaluations may therefore overestimate
operational effectiveness if system level constraints are not
explicitly considered.

This gap motivates the need for pre deployment analytical
studies that forecast system behavior prior to implementation.
Rather than proposing a new detection model or reporting
experimental benchmarks this paper adopts a predictive and
system level perspective focused on estimating realistic
operational performance bounds for artificial intelligence
enhanced intrusion detection and prevention systems under
stated assumptions.

II.  RELATED WORK

Research on intrusion detection systems spans several decades
and encompasses a wide range of detection paradigms. Early
intrusion detection solutions primarily relied on signature
based techniques which match observed traffic against known
attack patterns [2]. While such approaches offer efficiency and
interpretability they are inherently limited to previously
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identified threats and require frequent manual updates to
remain effective.

To improve adaptability anomaly based detection techniques
were introduced leveraging statistical and machine learning
methods to identify deviations from normal behavior [1].
Although these approaches reduce reliance on explicit
signatures they introduce challenges related to false positives
and model generalization. More recently deep learning
techniques have been applied to intrusion detection motivated
by their success in representation learning and sequential data
modeling tasks.

Convolutional neural networks have been employed to extract
structured features from packet level and flow level data while
recurrent architectures such as long short term memory
networks model temporal dependencies across traffic
sequences [5], [6], [7]. Hybrid deep learning architectures
combining convolutional and recurrent components have
demonstrated promising detection performance on benchmark
datasets including UNSW NB Fifteen and CIC IDS [3], [4].
However several studies have highlighted limitations of these
datasets with respect to traffic realism class imbalance and
representativeness of operational network conditions [8].

In contrast to experimental and benchmark driven studies
relatively fewer works address the system level behavior of
intrusion detection and prevention systems prior to
deployment. Existing performance modeling studies often
focus on inference efficiency while overlooking pipeline level
effects such as buffering queueing delays and shared resource
contention [9], [10]. This work differentiates itself by
explicitly focusing on pre deployment analytical forecasting of
operational behavior under system level constraints rather than
model level optimization.

III. ASSUMPTIONS AND SCOPE

Predictive and analytical studies depend critically on the
assumptions under which performance forecasts are derived.
Unlike experimental evaluations where system behavior is
directly observed pre deployment analysis requires explicit
articulation of environmental architectural and operational
conditions to ensure transparency and reviewer defensibility.
Several prior studies have emphasized that performance claims
derived without clearly stated assumptions often lead to over
optimistic expectations in real world deployments [1], [12].

The analysis presented in this work assumes deployment
within a high speed enterprise or backbone network
environment such as large organizational infrastructures or
data centers where sustained traffic volumes are significant
and packet arrival rates may vary over time. Network traffic is
modeled as a mixture of benign and malicious activity with
stochastic abstractions used to capture variability while
maintaining analytical tractability. Although real world
network traffic frequently exhibits burstiness and long range
dependence simplified traffic models are commonly adopted
in analytical performance studies to obtain conservative and
interpretable latency trends [9], [10].
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The intrusion detection and prevention system under
consideration is assumed to employ an artificial intelligence
enhanced detection pipeline based on a validated deep
learning architecture such as hybrid convolutional and
recurrent models widely reported in the literature [5], [6], [7].
The detection model is treated as an established baseline rather
than a novel contribution and no assumptions are made
regarding architectural optimization or online retraining
during deployment. Baseline detection performance is
assumed to originate from controlled laboratory evaluations
reported in prior studies which have demonstrated strong
detection capability under curated experimental conditions
[12].

Hardware assumptions include server class systems equipped
with multi core processors and optional accelerators capable
of supporting inference workloads. Sufficient memory
resources are assumed to buffer incoming traffic under
moderate load conditions thereby avoiding immediate packet
loss. However under high utilization scenarios queue growth
delayed processing and increased waiting time are explicitly
considered as dominant factors influencing operational latency
behavior. The analysis does not assume unlimited resources or
perfect scalability which aligns with observations reported in
system performance modeling studies [10], [13].

Importantly this study does not attempt to model worst case
adversarial behavior encrypted traffic inspection at line rate or
guaranteed detection outcomes. Factors such as concept drift
adversarial evasion and long term model adaptation are
acknowledged as important challenges in practical
deployments but are treated as limitations rather than
explicitly modeled phenomena [11], [12]. Consequently the
performance forecasts presented in this work should be
interpreted as indicative operational bounds under stated
assumptions rather than universal guarantees applicable to all

deployment environments.

IV. MODELING AND PREDICTIVE METHODOLOGY

This section describes the analytical framework used to
forecast the operational behavior of the Al-enhanced IDS/IPS
prior to deployment. The objective is not to derive exact
numerical predictions, but to identify dominant system-level
factors that influence latency, throughput, and performance
degradation under increasing load.

A. IDS/IPS Processing Pipeline

In operational environments, intrusion detection is per
formed through a multi-stage processing pipeline rather than a
single inference step. For analytical clarity, the IDS/IPS is
decomposed into the following sequential components:

Packet capture and buffering

Feature extraction and preprocessing

Queueing and scheduling

Deep learning inference

Decision and response generation

As shown in Fig. 1, overall detection latency results from the
combined impact of multiple processing stages, rather than
inference time alone.
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Fig. 1. Conceptual IDS/IPS processing pipeline illustrating
traffic ingestion, feature extraction, Al-based intrusion
detection, buffering and queueing effects, decision logic, and
policy-driven prevention and response stages. The figure is
illustrative and does not represent a specific implementation or
deployment environment.

The total end-to-end detection latency, Tdet, is expressed as
the sum of these components:

Tdet = Tbuf +Tqueue +Tinfer + Tdec (D)

While inference time is often emphasized in experimental
studies, this formulation explicitly recognizes that buffering
and queueing delays can dominate overall latency under
realistic operating conditions.

B. Queueing-Based Latency Modeling

To capture congestion effects, the detection pipeline is
approximated using a single-server queueing abstraction. Let A
denote the effective packet arrival rate and p the service rate of
the IDS/IPS pipeline. System utilization is defined as:

p=i/p )

Under this model, queueing delay increases rapidly as
utilization approaches saturation. At low to moderate
utilization levels, latency is primarily influenced by fixed
pipeline overheads such as feature extraction and inference. As
utilization increases, queueing delay becomes the dominant
contributor to end-to-end detection latency, leading to sharp
increases in response time.

This behavior reflects a fundamental system-level
constraint rather than an implementation-specific limitation.
Even highly optimized inference engines experience significant
latency growth when incoming traffic approaches processing
capacity.

C. Throughput and Scalability Considerations.

Throughput is defined as the maximum sustainable arrival
rate that can be processed without unbounded queue growth.
Stable operation requires maintaining utilization below
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saturation, implying that deployment decisions must balance
traffic load against available processing capacity.

Scalability is examined by considering the addition of
parallel processing units, such as multiple inference servers or
accelerators. Under ideal conditions, aggregate service capacity
increases approximately linearly with added resources.
However, the analysis explicitly acknowledges diminishing
returns due to coordination overhead, memory bandwidth
constraints, and shared I/O resources. As a result, scalability is
treated as near-linear but load dependent, rather than perfectly
linear.

V.

This section presents the forecasted operational per
formance of the Al-enhanced IDS/IPS derived from the
analytical framework described above. The results are
predictive in nature and are expressed as conservative ranges
rather than precise point estimates. They should be interpreted
as indicative trends under stated assumptions.

PREDICTED RESULTS AND PERFORMANCE FORECASTS

A. Detection Accuracy Forecast

Under controlled laboratory conditions, deep learning based
IDS models commonly achieve high detection accuracy on
curated datasets. However, operational environments
introduce additional sources of variability, includ ing traffic
noise, distributional shift, and processing constraints.
Accounting for these factors, detection accuracy is forecasted
to remain within the 95-98% range under realistic operating
conditions.

At moderate utilization levels, accuracy is expected to
remain close to the upper bound of this range. As utilization
increases toward saturation, minor degradation may occur due
to delayed processing, incomplete feature context, or packet
loss. Rather than assuming constant accuracy, the analysis
allows for gradual degradation con sistent with system-level
constraints.

B. False Positive Rate Forecast

False positive rate is a critical operational metric, as
excessive false alerts can overwhelm analysts and reduce trust
in automated defenses. Based on conservative as sumptions
and prior observations in deployed systems, the IDS/IPS is
forecasted to exhibit a false positive rate in the range of
approximately 0.5-2%. Lower traffic volumes and stable
processing conditions are expected to keep false positives near
the lower bound of this range. Under higher load or noisy
conditions, false positives may increase due to reduced
contextual information or delayed classification.

C. End-to-End Detection Latency

End-to-end detection latency incorporates both fixed pipeline
overhead and variable queueing delay. Under the pipeline-
aware model, detection latency is forecasted to fall within the
150-400 ms range, depending on traffic intensity and system
utilization.

At low to moderate utilization, latency is dominated by feature
extraction and inference overhead. As utilization increases,
queueing delay becomes the dominant factor, leading to
increased tail latency. Sustained operation near saturation is
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therefore expected to result in significant latency growth
unless additional processing resources are provisioned.

D. Degradation Trends Under Increasing Load

While baseline detection performance of Al-enhanced
Intrusion Detection Systems (IDS) and Intrusion Prevention
Systems (IPS) may appear stable under low to moderate traffic
conditions, their operational behavior is expected to degrade
as system load increases. This degradation is primarily driven
by system-level constraints rather than intrinsic limitations of
the underlying detection model.

As incoming traffic intensity rises, packet arrival rates may
approach or exceed the service capacity of one or more stages
within the IDS/IPS processing pipeline. Under such
conditions, buffering and queueing delays begin to dominate
end-to-end detection latency. Even when model inference time
remains relatively constant, accumulated waiting time at
preprocessing, scheduling, and decision stages can result in
significant latency growth.

From an analytical perspective, this behavior is consistent
with classical queueing theory, in which response time
increases nonlinearly as system utilization approaches
saturation. Consequently, detection latency is expected to
remain relatively stable at low utilization levels, increase
gradually under moderate load, and rise sharply when the
system operates near or beyond its processing capacity. This
nonlinear degradation trend has important implications for
deployment planning, as it indicates that performance
bottlenecks are more likely to emerge from resource
contention and pipeline congestion than from model inference
complexity alone.

The following figure illustrates this expected relationship
between system utilization and end-to-end detection latency in
an Al-enhanced IDS/IPS, emphasizing indicative performance
trends rather than measured results.

End-to-End Detection Latency

lllustrative trend — not measured data

Medium
System Utilization (p)

Low High

Indicative relationship between system utilization and end-to-end detection latency

Fig. 2. Indicative relationship between system utilization and
end to-end detection latency in an Al-enhanced IDS/IPS. The
curve illustrates nonlinear latency growth driven by queueing
effects as utilization approaches saturation.

As illustrated in Fig. 2, detection latency is expected to
increase nonlinearly as system utilization rises, with queueing
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delays becoming the dominant contributor under high-load
conditions.

E. Latency Decomposition Across Processing Stages

In addition to analyzing overall detection latency under
increasing system load, it is important to examine how
individual stages within the IDS/IPS processing pipeline
contribute to end-to-end delay. Unlike inference-centric
evaluations, operational latency arises from the cumulative
effect of multiple pipeline components, including packet
ingestion, feature extraction, buffering, queueing, model
inference, and decision enforcement.

Analytical reasoning suggests that while Al-based inference
typically contributes a bounded and relatively stable
processing cost, other pipeline stages can introduce substantial
delay under high utilization conditions. In particular, queueing
delay grows rapidly as incoming traffic approaches system
processing capacity, often becoming the dominant contributor
to end-to-end detection latency. Preprocessing and scheduling
overheads further add to latency, especially in high-throughput
environments where shared computational resources are
contended.

As system load increases, the relative contribution of
queueing and buffering stages expands, while the proportional
contribution of inference time decreases. This shift highlights
a key limitation of evaluations that focus exclusively on
optimizing inference speed. Even highly efficient models may
experience degraded responsiveness if upstream or
downstream pipeline stages become congested.

The following figure presents an illustrative decomposition
of end-to-end detection latency across major IDS/IPS
processing stages. The figure emphasizes relative
contributions rather than exact measured values and is
intended to convey qualitative trends derived from analytical
modeling.

lllustrative decomposition of end-to-end detection latency across IDS/IPS
processinig stages
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Fig. 3. Illustrative decomposition of end-to-end detection
latency across IDS/IPS processing stages, highlighting the
relative contributions of preprocessing, queueing, inference,
and decision components under varying system load
conditions.

This decomposition reinforces the importance of system-
level optimization in deployment planning. Reducing overall
detection latency requires not only efficient inference models
but also effective queue management, balanced resource
allocation, and pipeline-aware system design.
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The predictive results presented in this study highlight several
important implications for the deployment of Al-enhanced
IDS/IPS systems. First, the analysis reinforces that operational
performance is governed not only by model-level detection
capability but also by system-level constraints such as traffic
load, queueing behavior, and processing pipeline design. Even
when a detection model demonstrates strong performance
under controlled conditions, its effectiveness in practice may
be limited by latency growth and resource contention as
utilization increases.

A key insight from the analytical framework is the dominant
role of queueing delay under high traffic intensity. While
inference time often receives primary attention in machine
learning—oriented studies, the results here suggest that
buffering and scheduling delays can outweigh inference costs
as systems approach saturation. This observation has direct
implications for deployment planning, indicating that capacity
provisioning and load management are as critical as model
selection.

The forecasts also illustrate inherent trade-offs between
detection accuracy, false positive rate, and responsiveness.
Conservative thresholding may reduce false positives but risks
delayed or missed detections under heavy load, while
aggressive sensitivity settings may increase alert volume
beyond manageable levels. These trade-offs cannot be fully
resolved through model optimization alone and must instead
be addressed through system-level design and operational
policies.

Despite its contributions, this study has several limitations.
The analytical models rely on simplified abstractions, such as
single-server queueing assumptions, to maintain tractability.
Real-world deployments may involve multi-stage pipelines,
distributed processing, and heterogeneous hardware, which
could alter specific performance characteristics. Additionally,
while concept drift and adversarial evasion are acknowledged
as important challenges, they are not explicitly modeled in the
predictive framework.

Finally, the results presented are indicative rather than
definitive. They are intended to support informed decision
making prior to deployment, not to replace empirical
validation. Deviations from the stated assumptions—such as
significantly different  traffic patterns, hardware
configurations, or threat landscapes—may result in different
operational outcomes.

DISCUSSION AND LIMITATIONS

VII. CONCLUSION AND FUTURE WORK

This paper presented a pre-deployment, predictive, and
analytical assessment of Al-enhanced intrusion detection and
prevention systems, focusing on estimating realistic
operational behavior under system-level constraints. By
treating deep learning—based detectors as validated baselines
and explicitly modeling pipeline-aware latency and queueing
effects, the study moves beyond optimistic laboratory
assumptions to provide conservative performance bounds
relevant to real-world deployment.

Under stated assumptions, the analysis forecasts detection
accuracy in the 95-98% range, false positive rates of
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approximately 0.5-2%, and end-to-end detection latency
typically between 150400 ms, depending on traffic intensity
and system utilization. These values should be interpreted as
indicative operational ranges rather than guaranteed outcomes.
The findings emphasize that deployment success depends as
much on infrastructure provisioning and load management as
on the underlying detection model.

Future work should focus on empirical validation of the
analytical forecasts through controlled testbed de ployments or
simulation-based studies. Incorporating distributed
architectures, multi-stage processing pipelines, and adaptive
load balancing mechanisms would further en hance the
realism of the framework. Additionally, extend ing the
analysis to account for concept drift, encrypted traffic, and
adversarial behavior represents an important direction for
sustaining long-term detection effectiveness.

By prioritizing analytical rigor, transparency, and
methodological honesty, this work contributes a defensible
framework for bridging the gap between offline evaluation
and operational deployment of Al-enhanced IDS/IPS systems.
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