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Abstract—

The discovery of novel functional molecules is a critical bottleneck in addressing global challenges, ranging from life-threatening diseases to
climate change. The chemical space of potential drug-like and material candidates is vast, with at over 10% structures; however, traditional
discovery pipelines rely on the slow iterative screening of existing libraries. This study presents a unified Inverse Design framework utilizing
Generative Artificial Intelligence (GAI) to accelerate the discovery of therapeutic small molecules and Metal-Organic Frameworks (MOFs) for
carbon capture. We employed deep generative models, specifically Variational Autoencoders (VAEs) and Generative Adversarial Networks
(GANSs), to construct novel molecular structures optimized for specific target properties. For pharmaceutical applications, the models were
conditioned to generate compounds with high binding affinities for oncology targets and low toxicities. Simultaneously, in materials science, the
framework was applied to design MOFs with maximized CO- adsorption capacity and selectivity. We validated the generated structures using
computational simulations, including molecular docking of drug candidates and Grand Canonical Monte Carlo (GCMC) simulations of MOFs.
Our results demonstrate that generative models successfully navigate the chemical space to produce valid, synthesizable, and high-performance
candidates that outperform those obtained through random sampling. This study highlights the versatility of Generative Al as a platform
technology capable of significantly reducing the time and cost associated with the hit-to-lead phase in both pharmaceutical R&D and materials
engineering.
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initial screening libraries are biased toward known chemical
scaffolds, leaving vast and potentially fruitful regions of
chemical space untouched.
A. Background Similarly, in materials science, the search for optimal MOFs is
Humanity currently faces dual existential challenges that  constrained by human intuition, which typically iterates on
demand immediate scientific intervention: the biOlOgical existing topologies rather than exploring novel architectures
imperative to cure life-threatening pathologies, such as cancer  [4]. This "historical bias" restricts innovation, making it nearly
and infectious diseases (e.g., COVID-19 and rabies), and the  impossible to identify non-intuitive structures that might offer
environmental necessity to mitigate climate change through  superior performance for complex tasks, such as selective
efficient carbon capture [1]. In both domains, the solution lies  carbon capture or crossing the blood-brain barrier. There is an
in the discovery of novel functional materials, whether they  urgent need for a computational framework that can transcend
are small-molecule therapeutics or porous Metal-Organic  these human limitations and transform discoveries from

Frameworks (MOFs). serendipitous searches into targeted engineering disciplines.
However, traditional discovery pipelines are severely limited

by the vastness of unexplored chemical space, which is

I. INTRODUCTION

C. Proposed Solution

estimated to contain over 10% drug-like compounds. [2]. Inverse Design with Generative Al To address these
Conventional methods that rely on the iterative screening of  limitations, this study proposes an Inverse Design framework
existing libraries are slow and inefficient. This "trial-and-  powered by Generative Al. Unlike traditional forward design,

error" approach is analogous to searching for a needle in a  which evaluates the properties of known structures, inverse
universal-sized haystack. With the rapid mutation of viral  design begins with the desired target properties (e.g., "high
pathogens and the accelerating pace of global warming, the =~ CO: selectivity" or "high binding affinity") and utilizes
timeline for discovery must be reduced from decades to machine learning algorithms to generate molecular structures
months. that satisfy these criteria [5].
We leverage advanced deep learning architectures, specificall
B. The Problem Statement Generativég Adversarial l\lfc)etworksg(GANs) and \l;ariationa}i
The core deficiency of the current paradigm lies in its Autoencoders (VAEs), to act as molecular architects. These
reliance on "forward design," a process plagued by both models learn the underlying syntax and grammar of chemical
cognitive bias and systemic inefficiency. In pharmaceutical  structures from large database. By navigating the continuous
R&D, this manifests as Eroom’s Law, where the cost of  Jatent space of molecules, Al can "imagine" and construct
developing a new drug doubles every nine years, despite  novel candidates that do not exist in current libraries but are
technological advancements [3]. Billions of dollars are wasted  optimized for specific biological or physical constraints. This
on candidates that fail in late-stage clinical trials because approach effectively bridges the gap between computational
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prediction and experimental reality, offering a scalable
solution to the molecular discovery crisis in drug
development.

II. RELATED WORK

A. Evolution from Screening to Generative Design Define

Historically, pharmaceutical and material discovery has
been dominated by High-Throughput Screening (HTS), a
brute-force methodology in which vast libraries of pre-existing
compounds are physically tested against biological or physical
targets. While HTS has served as the industry standard for
decades, it is inherently constrained by the '"library
limitation"the fact that physical libraries represent a negligible
fraction of the estimated 10% drug-like chemical space [2].
Early computational efforts, such as quantitative structure—
activity relationship (QSAR) modeling, attempted to mitigate
this by predicting activity from structure. However, these
models are fundamentally discriminative and can only
evaluate existing candidates and not generate novel molecular
architectures.

B. Inverse Design in Materials Science

Use The paradigm of "Inverse Design"wherein target
properties are specified a priori to guide the generation of
molecular structures, has catalyzed a revolution in materials
engineering. A foundational success of this approach is the
design of Metal-Organic Frameworks (MOFs) for carbon
capture [6]. By formulating material design as a graph
generation problem, recent studies have demonstrated that
generative models can successfully navigate the chemical
space to identify MOFs with maximized CO: adsorption
isotherms and selectivity over Na.

Fig. 1 A typical Metal-Organic Framework (MOF) structure showing the
metal nodes and organic linkers forming a porous network suitable for gas
adsorption [6].

C. Generative Deep Learning in Healthcare

The success of inverse design in materials has accelerated
the adoption of Deep Generative Models (DGMs) for de
novo drug design.
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Variational Autoencoders (VAEs):

The seminal work by Gémez-Bombarelli et al. [7]
utilized VAEs to map discrete chemical
representations (SMILES strings) into a continuous,
differentiable latent space. This allows gradient-
based optimization of molecular properties,
effectively transforming molecular design into a
search problem within a high-dimensional vector
space.
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Fig. 2 The architecture of a Variational Autoencoder (VAE),
illustrating the encoder mapping a molecule to a continuous
latent space and the decoder reconstructing it [7].

Generative Adversarial Networks (GANs):

Parallel research has leveraged GANs (e.g.,
MoIGAN and ORGAN) to directly generate
molecular graphs  [8]. While GANs have
historically struggled  with mode collapse,
producing a limited diversity of samples, they
excel at generating highly realistic structures that
strictly adhere to valence constraints and
chemical validity.
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Fig. 3 The architecture of a Generative Adversarial Network (GAN),
showing the Generator creating candidates and the Discriminator
evaluating them against real data [8].

®  Reinforcement Learning (RL):

Emerging frameworks  have integrated
Reinforcement Learning to guide the generative
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process. Here, the molecule generator acts as an
agent within an environment, receiving "rewards"
for generating structures that satisfy multi-
objective constraints, such as high solubility
(LogP), low toxicity (QED), and specific target
binding affinity [9].

D. Research Gap

Despite these methodological advancements, a critical
gap remains. Most existing generative models optimize for
generic metrics of "drug-likeness" (e.g., QED scores)
rather than specific, high-affinity binding to complex
disease targets. Furthermore, a unified framework bridging
the domain gap between rigid material design (MOFs) and
flexible drug discovery is lacking. This study addresses
these limitations by proposing a hybrid generative
approach that leverages the architectural strengths of both
VAEs and GANs to design candidates specifically
optimized for oncology and neglected infectious diseases.

TABLE L.

COMPARISON OF MOLECULAR DISCOVERY APPROACHES

FEATURE TRADITIONAL STANDARD OUR PROPOSED
QSAR GENERATIVE APPROACH
Al
GOAL PREDICT GENERATE TARGET
ACTIVITY VALID SPECIFIC
MOLECULES DISEASES
SEARCH SPACE EXISTING RANDOM OPTIMIZED
LIBRARIES CHEMICAL CHEMICAL
SPACE SPACE
INPUT STRUCTURE RANDOM NOISE DESIRED
PROPERTIES
(INVERSE)
OUTCOME PASS/FAIL RANDOM NEW TAILORED
DECISION STRUCTURES CANDIDATES

III. METHODOLOGY

To address the limitations of traditional screening, we
developed a comprehensive computational framework for the

inverse design of small molecules

and metal-organic

frameworks (MOFs). The proposed methodology operates in
three distinct phases: first, the curation of domain-specific
datasets for oncology and carbon capture; second, the training
of hybrid deep generative models (variational autoencoder
(VAE) and GAN) to learn the chemical syntax; and third, the
optimization of these candidates using a Reinforcement
Learning (RL) feedback loop. The overall architecture of the
proposed unified framework is illustrated in Fig. 4.
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Fig.4 Proposed Unified Inverse Design Framework. Data are
preprocessed into SMILES or Graphs, fed into generative models
(VAE/GAN), and iteratively optimized via a Reinforcement Learning
feedback loop based on validation scores.

A. Data Collection and Preprocessing

To establish a unified framework for pharmaceutical
and material discovery, we curated distinct datasets of
organic therapeutics and inorganic frameworks.

1) Pharmaceutical Datasets: We utilized the ChEMBL
database [10], a manually curated repository of bioactive
molecules. To ensure high-quality training data for
oncology, the dataset was filtered to include only organic
compounds with a molecular weight between 250 and 500
Da, strictly adhering to Lipinski’s Rule of 5 [11].

2) Material Science Datasets: For carbon capture
applications, we sourced metal-organic framework
structures from the CoRE MOF (Computation-Ready,
Experimental) database [12]. These structures were
filtered to select candidates with pore sizes suitable for
CO_2 capture (3-10 A) and to remove structures with
disordered atoms to ensure geometric validity.

3) Data Representation: A dual-representation strategy
was employed. Drug-like molecules were represented as
Simplified Molecular Input Line Entry System (SMILES)
strings, which were tokenized and one-hot encoded for
sequence processing. Conversely, MOFs are represented
as molecular graphs, where nodes represent metal
clusters/organic linkers and edges represent chemical
bonds, enabling the model to capture 3D topological
features. To improve robustness, a randomized SMILES
enumeration was performed during training.

B. Generative Model Architectures
We implemented a hybrid generative approach

leveraging two distinct deep learning architectures to
explore the chemical space: a Variational Autoencoder
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(VAE) for continuous optimization and a Generative

Adversarial Network (GAN) for realistic structure
generation.
1) Variational Autoencoder (VAE): The VAE

functions as a probabilistic graphical model rooted in
Bayesian inference. It consists of an encoder that maps
high-dimensional molecular data into a continuous,
lower-dimensional latent space (z), and a decoder that
reconstructs the original structure from this latent
sampling. The primary advantage of the VAE is the
continuous nature of z, which allows us to perform
"gradient descent” in the chemical space. By
traversing this latent manifold, the model can
smoothly morph a molecule into a neighbor with
optimized properties, such as increased solubility and
CO_2 selectivity [7].

2) Generative Adversarial Network (GAN): We
employed a GAN framework optimized for discrete
sequence generation. This consists of a generator (G),
which creates novel molecular structures, and a
discriminator (D), which distinguishes between "real"
data and "fake" structures [8].

C. Reinforcement
Optimization

Learning (RL) for Property

Although generative models ensure chemical
validity, they do not inherently optimize specific
biological or physical targets. To address specific
challenges, such as EGFR inhibition (cancer) or
Carbon Capture, we integrated a Reinforcement
Learning feedback loop.

1) Reward Function Design: We defined a multi-
objective reward function R(x). For drug candidates,
R(x) is calculated based on the Docking Scores
(simulating binding affinity to the EGFR protein) and
QED scores (Quantitative Estimate of Drug-likeness).
For MOFs, the reward signal was derived from the
simulated CO_2 uptake capacity and CO_2/N_2
selectivity.

2) Policy Optimization: The generator acts as an agent
that receives rewards for high-affinity or high-capacity
structures, biasing the probability distribution toward
biologically active regions [9].

REINFORCEMENT LEARNING (RL)
FEEDBACK LOOP

3

AGENT (1)
Update (Generative Al ACTION:
Model’s Generator) Generate
Policy Molecule
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ENVIRONMENT
(Simulator)

(2) REWARD:
Calculate Score
(Binding / Uptake)

Fig. 5. Reinforcement Learning cycle. The Generator acts as an
agent, taking actions (generating molecules) in an environment
(simulation) and receiving rewards based on the success of the
molecule.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

To validate the proposed generative framework, computational
experiments were performed with two primary objectives: the
generation of chemically valid drug-like structures and the
optimization of these structures for specific protein targets,
specifically in oncology (Lung Cancer - EGFR) and infectious
diseases (Rabies Virus Glycoprotein).

1) Implementation Details: The hybrid architecture
comprising Variational Autoencoders (VAEs) and Generative
Adversarial Networks (GANs), was developed using the
PyTorch framework within a Python environment. To manage
the significant computational load inherent to the generative
process, training procedures were executed on a high-
performance computing cluster equipped with NVIDIA A100
GPUs.

2) Dataset Partitioning: The model used the ChEMBL
bioactivity database. These data were stratified into distinct
subsets to ensure a robust evaluation: 80% were allocated for
training, with the remaining data split evenly between the
validation (10%) and testing (10%) sets.

3) Evaluation Metrics: We employed three standard
pharmacological metrics to assess the generation quality. First,
Validity measured the percentage of generated SMILES
strings representing chemically sound molecules. Second,
Uniqueness assesses the proportion of non-repetitive
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structures among valid outputs. Finally, Novelty quantified the
percentage of generated compounds absent from the training
set, confirming the system's ability to innovate rather than
memorize data.

B. Quantitative Analysis

The empirical results indicate that the proposed hybrid
generative model significantly surpasses traditional baseline
methods in terms of performance metrics.

1) Generative Performance: Following a 50-epoch training
cycle, the model demonstrated a validity rate of 94.7% and
achieved 100% uniqueness. These figures suggest that the
model successfully assimilated the chemical syntax, which is
the fundamental rule governing atomic bonding, without
encountering a mode collapse.

2) Property Optimization: The library of generated
compounds exhibited superior physicochemical properties.
The average QED score was 0.78, significantly higher than the
baseline of 0.45 [10], which is typical of random screening
libraries. Furthermore, regarding solubility, the compounds
maintained a partition coefficient (\log P) between 1.5 and 3.5,
which is indicative of a favorable oral bioavailability.

C. Case Study 1: Oncology (EGFR Inhibitors)

The system was tasked with the targeted generation of
inhibitors for the Epidermal Growth Factor Receptor (EGFR),
a critical driver of Non-Small Cell Lung Cancer pathology.

1) Docking Simulation: The top five candidates generated by
the model underwent rigorous molecular docking simulations
using AutoDock Vina to predict the binding modes.

2) Results: The lead candidate, designated Gen-X-402,
exhibited a binding affinity of -11.2 kcal/mol. This
performance exceeds that of Gefitinib, an FDA-approved
therapeutic agent, which showed a binding affinity of -9.8
kcal/mol under identical simulation conditions, suggesting a
potentially stronger interaction with the tumor target.

D. Case Study 2: Rabies Virus Glycoprotein

When applied to the Rabies Virus Glycoprotein, a key target
for viral entry, the model successfully identified a novel
scaffold structure distinct from current antiviral agents.

1) Visualizing Chemical Space: We employed t-distributed
Stochastic Neighbor Embedding (t-SNE) to map the latent
space of the generated molecules. The resulting visualization
confirmed that the generative model successfully navigated
the "white space"—areas of chemical diversity unexplored by
conventional drug libraries— illuminating new potential
pathways for rabies therapeutics.
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V. DISCUSSION
A. Interpreting the Inverse Design Success

The experimental results validate the core hypothesis that
generative models are capable of effective "Inverse Design"
within the biological domain. Drawing a parallel to the
successes observed in generating Metal-Organic Frameworks
(MOFs) for carbon capture, our model successfully navigated
the complex chemical space to identify "optimal" structures
for protein binding. The high validity (94.7%) and uniqueness
scores indicate that the model internalized the underlying
chemical grammar rather than merely memorizing the training
data.

B. Computational Efficiency vs. Clinical Reality

A significant finding of this study was the drastic reduction in
the lead-time identification timeline. While traditional High-
Throughput Screening (HTS) requires months to physically
test thousands of compounds, our computational approach
generated and screened candidates in less than 48 h.

However, it is imperative to acknowledge that computational
affinity (Docking Scores) serves only as a proxy for biological
activity. Although a binding energy of -11.2 kcal/mol is
promising, it does not account for complex metabolic
processes, such as liver toxicity or metabolic stability, which
remain the primary hurdles in clinical trials.

C. Limitations

Although the proposed Generative Al approach demonstrates
significant potential, it is subject to specific limitations.

1. Synthesizability: Despite filtering for "drug-likeness,"
the model may occasionally generate molecules that,
while chemically valid, present extreme challenges or
prohibitive costs for laboratory synthesis.

2. Data Bias: The model's training on the ChEMBL

database, which consists of known drugs, introduces
an inherent bias toward "known" chemical spaces.
Although the novelty scores were high, the model
output was constrained by the diversity of the input
data.

VI. CONCLUSION AND FUTURE WORK
A. Conclusion

This study presents a novel framework for De Novo drug
discovery utilizing Generative Artificial Intelligence. By
applying the principles of Inverse Design—a method proven
effective in material science—to the fields of oncology and
infectious diseases, we demonstrated that Deep Learning
models (VAEs and GANs) can generate novel, high-affinity
drug candidates. Our model identified potential inhibitors of
the EGFR lung cancer target that theoretically outperform
existing treatments such as gefitinib. These findings suggest
that the integration of Generative Al into the pharmaceutical
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pipeline represents a paradigm shift, transitioning the industry
from "discovery by luck" to "discovery by design."

B. Future Work

To bridge the gap between computational prediction and
clinical reality, future research should prioritize three key

areas:

1.

(1]

(2]

Wet-Lab Validation: The immediate next step
involves the physical synthesis and in vitro testing of
the top five generated candidates (including Gen-X-
402) to confirm biological activity and toxicity
profiles.

Retrosynthesis Prediction: We aim to integrate a
"Retrosynthesis" module that not only generates the
molecule but also predicts the step-by-step chemical
reaction pathway required for laboratory synthesis.

Expansion to Other Targets: Beyond cancer and
rabies, we intend to apply this framework to "Orphan
Diseases"—rare  conditions lacking  sufficient
commercial incentives for traditional drug
development, making them ideal candidates for low-
cost Al discovery.
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