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Abstract—  

The discovery of novel functional molecules is a critical bottleneck in addressing global challenges, ranging from life-threatening diseases to 
climate change. The chemical space of potential drug-like and material candidates is vast, with at over 1060 structures; however, traditional 
discovery pipelines rely on the slow iterative screening of existing libraries. This study presents a unified Inverse Design framework utilizing 
Generative Artificial Intelligence (GAI) to accelerate the discovery of therapeutic small molecules and Metal-Organic Frameworks (MOFs) for 
carbon capture. We employed deep generative models, specifically Variational Autoencoders (VAEs) and Generative Adversarial Networks 
(GANs), to construct novel molecular structures optimized for specific target properties. For pharmaceutical applications, the models were 
conditioned to generate compounds with high binding affinities for oncology targets and low toxicities. Simultaneously, in materials science, the 
framework was applied to design MOFs with maximized CO₂ adsorption capacity and selectivity. We validated the generated structures using 
computational simulations, including molecular docking of drug candidates and Grand Canonical Monte Carlo (GCMC) simulations of MOFs. 
Our results demonstrate that generative models successfully navigate the chemical space to produce valid, synthesizable, and high-performance 
candidates that outperform those obtained through random sampling. This study highlights the versatility of Generative AI as a platform 
technology capable of significantly reducing the time and cost associated with the hit-to-lead phase in both pharmaceutical R&D and materials 
engineering. 
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I.  INTRODUCTION 

A. Background 

Humanity currently faces dual existential challenges that 
demand immediate scientific intervention: the biological 
imperative to cure life-threatening pathologies, such as cancer 
and infectious diseases (e.g., COVID-19 and rabies), and the 
environmental necessity to mitigate climate change through 
efficient carbon capture [1]. In both domains, the solution lies 
in the discovery of novel functional materials, whether they 
are small-molecule therapeutics or porous Metal-Organic 
Frameworks (MOFs). 
However, traditional discovery pipelines are severely limited 
by the vastness of unexplored chemical space, which is 
estimated to contain over 10⁶⁰ drug-like compounds. [2]. 
Conventional methods that rely on the iterative screening of 
existing libraries are slow and inefficient. This "trial-and-
error" approach is analogous to searching for a needle in a 
universal-sized haystack. With the rapid mutation of viral 
pathogens and the accelerating pace of global warming, the 
timeline for discovery must be reduced from decades to 
months. 

B. The Problem Statement 

The core deficiency of the current paradigm lies in its 
reliance on "forward design," a process plagued by both 
cognitive bias and systemic inefficiency. In pharmaceutical 
R&D, this manifests as Eroom’s Law, where the cost of 
developing a new drug doubles every nine years, despite 
technological advancements [3]. Billions of dollars are wasted 
on candidates that fail in late-stage clinical trials because 

initial screening libraries are biased toward known chemical 
scaffolds, leaving vast and potentially fruitful regions of 
chemical space untouched. 
Similarly, in materials science, the search for optimal MOFs is 
constrained by human intuition, which typically iterates on 
existing topologies rather than exploring novel architectures 
[4]. This "historical bias" restricts innovation, making it nearly 
impossible to identify non-intuitive structures that might offer 
superior performance for complex tasks, such as selective 
carbon capture or crossing the blood-brain barrier. There is an 
urgent need for a computational framework that can transcend 
these human limitations and transform discoveries from 
serendipitous searches into targeted engineering disciplines. 

C. Proposed Solution 

     Inverse Design with Generative AI To address these 
limitations, this study proposes an Inverse Design framework 
powered by Generative AI. Unlike traditional forward design, 
which evaluates the properties of known structures, inverse 
design begins with the desired target properties (e.g., "high 
CO₂ selectivity" or "high binding affinity") and utilizes 
machine learning algorithms to generate molecular structures 
that satisfy these criteria [5]. 
We leverage advanced deep learning architectures, specifically 
Generative Adversarial Networks (GANs) and Variational 
Autoencoders (VAEs), to act as molecular architects. These 
models learn the underlying syntax and grammar of chemical 
structures from large database. By navigating the continuous 
latent space of molecules, AI can "imagine" and construct 
novel candidates that do not exist in current libraries but are 
optimized for specific biological or physical constraints. This 
approach effectively bridges the gap between computational 
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prediction and experimental reality, offering a scalable 
solution to the molecular discovery crisis in drug 
development. 
 

II. RELATED WORK 

A. Evolution from Screening to Generative Design Define  

     Historically, pharmaceutical and material discovery has 
been dominated by High-Throughput Screening (HTS), a 
brute-force methodology in which vast libraries of pre-existing 
compounds are physically tested against biological or physical 
targets. While HTS has served as the industry standard for 
decades, it is inherently constrained by the "library 
limitation"the fact that physical libraries represent a negligible 
fraction of the estimated 10⁶⁰ drug-like chemical space [2]. 
Early computational efforts, such as quantitative structure–
activity relationship (QSAR) modeling, attempted to mitigate 
this by predicting activity from structure. However, these 
models are fundamentally discriminative and can only 
evaluate existing candidates and not generate novel molecular 
architectures. 

B. Inverse Design in Materials Science 

Use The paradigm of "Inverse Design"wherein target 
properties are specified a priori to guide the generation of 
molecular structures, has catalyzed a revolution in materials 
engineering. A foundational success of this approach is the 
design of Metal-Organic Frameworks (MOFs) for carbon 
capture [6]. By formulating material design as a graph 
generation problem, recent studies have demonstrated that 
generative models can successfully navigate the chemical 
space to identify MOFs with maximized CO₂ adsorption 
isotherms and selectivity over N₂. 

 

  
 

Fig. 1  A typical Metal-Organic Framework (MOF) structure showing the      
metal nodes and organic linkers forming a porous network suitable for gas 
adsorption [6]. 

 

C. Generative Deep Learning in Healthcare 

The success of inverse design in materials has accelerated 
the adoption of Deep Generative Models (DGMs) for de 

novo drug design. 
 

• Variational Autoencoders (VAEs): 

The seminal work by Gómez-Bombarelli et al. [7] 
utilized VAEs to map discrete chemical 
representations (SMILES strings) into a continuous, 
differentiable latent space. This allows gradient-
based optimization of molecular properties, 
effectively transforming molecular design into a 
search problem within a high-dimensional vector 
space. 

 

 
 

Fig. 2  The architecture of a Variational Autoencoder (VAE), 
illustrating the encoder mapping a molecule to a continuous 
latent space and the decoder reconstructing it [7]. 

 
• Generative Adversarial Networks (GANs): 

 

Parallel research has leveraged GANs (e.g., 
MolGAN and  ORGAN) to directly generate 
molecular graphs  [8]. While GANs have  
historically struggled  with mode collapse,  
producing a limited diversity of samples,  they 
excel at generating highly realistic structures that 
strictly adhere to valence constraints and 
chemical validity. 

 

 
Fig. 3  The architecture of a Generative Adversarial Network (GAN), 
showing the Generator creating candidates and the Discriminator 
evaluating them against real data [8]. 
 

• Reinforcement Learning (RL):  

 

Emerging frameworks have integrated 
Reinforcement Learning to guide the generative 
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process. Here, the molecule generator acts as an 
agent within an environment, receiving "rewards" 
for generating structures that satisfy multi-
objective constraints,  such as high solubility 
(LogP), low toxicity (QED), and specific target 
binding affinity [9]. 

 

D. Research Gap 

Despite these methodological advancements, a critical 
gap remains. Most existing generative models optimize for 
generic metrics of "drug-likeness" (e.g., QED scores) 
rather than specific, high-affinity binding to complex 
disease targets. Furthermore, a unified framework bridging 
the domain gap between rigid material design (MOFs) and 
flexible drug discovery is lacking. This study addresses 
these limitations by proposing a hybrid generative 
approach that leverages the architectural strengths of both 
VAEs and GANs to design candidates specifically 
optimized for oncology and neglected infectious diseases. 

TABLE I.   

COMPARISON OF MOLECULAR DISCOVERY APPROACHES 

FEATURE TRADITIONAL 

QSAR 
STANDARD 

GENERATIVE 

AI 

OUR PROPOSED 

APPROACH 

GOAL PREDICT 
ACTIVITY 

GENERATE 
VALID 

MOLECULES 

TARGET 
SPECIFIC 
DISEASES 

SEARCH SPACE EXISTING 
LIBRARIES 

RANDOM 
CHEMICAL 

SPACE 

OPTIMIZED 
CHEMICAL 

SPACE 

INPUT STRUCTURE RANDOM NOISE DESIRED 
PROPERTIES 
(INVERSE) 

OUTCOME PASS/FAIL 
DECISION 

RANDOM NEW 
STRUCTURES 

TAILORED 
CANDIDATES 

 
III. METHODOLOGY 

 
To address the limitations of traditional screening, we 

developed a comprehensive computational framework for the 
inverse design of small molecules and metal-organic 
frameworks (MOFs). The proposed methodology operates in 
three distinct phases: first, the curation of domain-specific 
datasets for oncology and carbon capture; second, the training 
of hybrid deep generative models (variational autoencoder 
(VAE) and GAN) to learn the chemical syntax; and third, the 
optimization of these candidates using a Reinforcement 
Learning (RL) feedback loop. The overall architecture of the 
proposed unified framework is illustrated in Fig. 4. 

 

 
Fig.4 Proposed Unified Inverse Design Framework. Data are 
preprocessed into SMILES or Graphs, fed into generative models 
(VAE/GAN), and iteratively optimized via a Reinforcement Learning 
feedback loop based on validation scores. 

 
A. Data Collection and Preprocessing 

To establish a unified framework for pharmaceutical 
and material discovery, we curated distinct datasets of 
organic therapeutics and inorganic frameworks. 

1) Pharmaceutical Datasets: We utilized the ChEMBL 
database [10], a manually curated repository of bioactive 
molecules. To ensure high-quality training data for 
oncology, the dataset was filtered to include only organic 
compounds with a molecular weight between 250 and 500 
Da, strictly adhering to Lipinski’s Rule of 5 [11]. 

2) Material Science Datasets: For carbon capture 
applications, we sourced metal-organic framework 
structures from the CoRE MOF (Computation-Ready, 
Experimental) database [12]. These structures were 
filtered to select candidates with pore sizes suitable for 
CO_2 capture (3–10 Å) and to remove structures with 
disordered atoms to ensure geometric validity. 

3) Data Representation: A dual-representation strategy 
was employed. Drug-like molecules were represented as 
Simplified Molecular Input Line Entry System (SMILES) 
strings, which were tokenized and one-hot encoded for 
sequence processing. Conversely, MOFs are represented 
as molecular graphs, where nodes represent metal 
clusters/organic linkers and edges represent chemical 
bonds, enabling the model to capture 3D topological 
features. To improve robustness, a randomized SMILES 
enumeration was performed during training. 

B. Generative Model Architectures 

We implemented a hybrid generative approach 
leveraging two distinct deep learning architectures to 
explore the chemical space: a Variational Autoencoder 
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(VAE) for continuous optimization and a Generative 
Adversarial Network (GAN) for realistic structure 
generation. 

1) Variational Autoencoder (VAE): The VAE 
functions as a probabilistic graphical model rooted in 
Bayesian inference. It consists of an encoder that maps 
high-dimensional molecular data into a continuous, 
lower-dimensional latent space (z), and a decoder that 
reconstructs the original structure from this latent 
sampling. The primary advantage of the VAE is the 
continuous nature of z, which allows us to perform 
"gradient descent" in the chemical space. By 
traversing this latent manifold, the model can 
smoothly morph a molecule into a neighbor with 
optimized properties, such as increased solubility and 
CO_2 selectivity [7]. 

2) Generative Adversarial Network (GAN): We 
employed a GAN framework optimized for discrete 
sequence generation. This consists of a generator (G), 
which creates novel molecular structures, and a 
discriminator (D), which distinguishes between "real" 
data and "fake" structures [8]. 

C. Reinforcement Learning (RL) for Property 

Optimization 

Although generative models ensure chemical 
validity, they do not inherently optimize specific 
biological or physical targets. To address specific 
challenges, such as EGFR inhibition (cancer) or 
Carbon Capture, we integrated a Reinforcement 
Learning feedback loop. 

1) Reward Function Design: We defined a multi-
objective reward function R(x). For drug candidates, 
R(x) is calculated based on the Docking Scores 
(simulating binding affinity to the EGFR protein) and 
QED scores (Quantitative Estimate of Drug-likeness). 
For MOFs, the reward signal was derived from the 
simulated CO_2 uptake capacity and CO_2/N_2 
selectivity. 

2) Policy Optimization: The generator acts as an agent 
that receives rewards for high-affinity or high-capacity 
structures, biasing the probability distribution toward 
biologically active regions [9]. 

 
Fig. 5. Reinforcement Learning cycle. The Generator acts as an 
agent, taking actions (generating molecules) in an environment 
(simulation) and receiving rewards based on the success of the 
molecule. 

IV. EXPERIMENTS AND RESULTS 

 
A. Experimental Setup 

To validate the proposed generative framework, computational 
experiments were performed with two primary objectives: the 
generation of chemically valid drug-like structures and the 
optimization of these structures for specific protein targets, 
specifically in oncology (Lung Cancer - EGFR) and infectious 
diseases (Rabies Virus Glycoprotein). 

1) Implementation Details: The hybrid architecture 
comprising Variational Autoencoders (VAEs) and Generative 
Adversarial Networks (GANs), was developed using the 
PyTorch framework within a Python environment. To manage 
the significant computational load inherent to the generative 
process, training procedures were executed on a high-
performance computing cluster equipped with NVIDIA A100 
GPUs. 

2) Dataset Partitioning: The model used the ChEMBL 
bioactivity database. These data were stratified into distinct 
subsets to ensure a robust evaluation: 80% were allocated for 
training, with the remaining data split evenly between the 
validation (10%) and testing (10%) sets. 

3) Evaluation Metrics: We employed three standard 
pharmacological metrics to assess the generation quality. First, 
Validity measured the percentage of generated SMILES 
strings representing chemically sound molecules. Second, 
Uniqueness assesses the proportion of non-repetitive 
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structures among valid outputs. Finally, Novelty quantified the 
percentage of generated compounds absent from the training 
set, confirming the system's ability to innovate rather than 
memorize data. 

 

B. Quantitative Analysis 

The empirical results indicate that the proposed hybrid 
generative model significantly surpasses traditional baseline 
methods in terms of performance metrics. 

1) Generative Performance: Following a 50-epoch training 
cycle, the model demonstrated a validity rate of 94.7% and 
achieved 100% uniqueness. These figures suggest that the 
model successfully assimilated the chemical syntax, which is 
the fundamental rule governing atomic bonding, without 
encountering a mode collapse. 

2) Property Optimization: The library of generated 
compounds exhibited superior physicochemical properties. 
The average QED score was 0.78, significantly higher than the 
baseline of 0.45 [10], which is typical of random screening 
libraries. Furthermore, regarding solubility, the compounds 
maintained a partition coefficient (\log P) between 1.5 and 3.5, 
which is indicative of a favorable oral bioavailability. 

C. Case Study 1: Oncology (EGFR Inhibitors) 

The system was tasked with the targeted generation of 
inhibitors for the Epidermal Growth Factor Receptor (EGFR), 
a critical driver of Non-Small Cell Lung Cancer pathology. 

1) Docking Simulation: The top five candidates generated by 
the model underwent rigorous molecular docking simulations 
using AutoDock Vina to predict the binding modes. 

2) Results: The lead candidate, designated Gen-X-402, 
exhibited a binding affinity of -11.2 kcal/mol. This 
performance exceeds that of Gefitinib, an FDA-approved 
therapeutic agent, which showed a binding affinity of -9.8 
kcal/mol under identical simulation conditions, suggesting a 
potentially stronger interaction with the tumor target. 

 

D. Case Study 2: Rabies Virus Glycoprotein 

When applied to the Rabies Virus Glycoprotein, a key target 
for viral entry, the model successfully identified a novel 
scaffold structure distinct from current antiviral agents. 

1) Visualizing Chemical Space: We employed t-distributed 
Stochastic Neighbor Embedding (t-SNE) to map the latent 
space of the generated molecules. The resulting visualization 
confirmed that the generative model successfully navigated 
the "white space"—areas of chemical diversity unexplored by 
conventional drug libraries— illuminating new potential 
pathways for rabies therapeutics. 

 

 

V. DISCUSSION 

A. Interpreting the Inverse Design Success 

The experimental results validate the core hypothesis that 
generative models are capable of effective "Inverse Design" 
within the biological domain. Drawing a parallel to the 
successes observed in generating Metal-Organic Frameworks 
(MOFs) for carbon capture, our model successfully navigated 
the complex chemical space to identify "optimal" structures 
for protein binding. The high validity (94.7%) and uniqueness 
scores indicate that the model internalized the underlying 
chemical grammar rather than merely memorizing the training 
data. 

B. Computational Efficiency vs. Clinical Reality 

A significant finding of this study was the drastic reduction in 
the lead-time identification timeline. While traditional High-
Throughput Screening (HTS) requires months to physically 
test thousands of compounds, our computational approach 
generated and screened candidates in less than 48 h. 

However, it is imperative to acknowledge that computational 
affinity (Docking Scores) serves only as a proxy for biological 
activity. Although a binding energy of -11.2 kcal/mol is 
promising, it does not account for complex metabolic 
processes, such as liver toxicity or metabolic stability, which 
remain the primary hurdles in clinical trials. 

C. Limitations 

Although the proposed Generative AI approach demonstrates 
significant potential, it is subject to specific limitations. 

1. Synthesizability: Despite filtering for "drug-likeness," 
the model may occasionally generate molecules that, 
while chemically valid, present extreme challenges or 
prohibitive costs for  laboratory synthesis. 

2. Data Bias: The model's training on the ChEMBL 
database, which consists of known drugs, introduces 
an inherent bias toward "known" chemical spaces. 
Although the  novelty scores were  high, the model 
output was  constrained by the diversity of the  input 
data.

 

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 

This study presents a novel framework for De Novo drug 
discovery utilizing Generative Artificial Intelligence. By 
applying the principles of Inverse Design—a method proven 
effective in material science—to the fields of oncology and 
infectious diseases, we demonstrated that Deep Learning 
models (VAEs and GANs) can generate novel, high-affinity 
drug candidates. Our model identified potential inhibitors of 
the EGFR lung cancer target that theoretically outperform 
existing treatments such as gefitinib. These findings suggest 
that the integration of Generative AI into the pharmaceutical 
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pipeline represents a paradigm shift, transitioning the industry 
from "discovery by luck" to "discovery by design." 

B. Future Work 

To bridge the gap between computational prediction and 
clinical reality, future research should prioritize three key 
areas: 

1. Wet-Lab Validation: The immediate next step 
involves the physical synthesis and in vitro  testing of 
the top five generated candidates (including Gen-X-
402) to confirm biological activity and toxicity 
profiles. 

2. Retrosynthesis Prediction: We aim to integrate a 
"Retrosynthesis" module that not only generates the 
molecule but also predicts the step-by-step chemical 
reaction pathway required for laboratory synthesis. 

3. Expansion to Other Targets: Beyond cancer and 
rabies, we intend to apply this framework to "Orphan 
Diseases"—rare conditions lacking sufficient 
commercial incentives  for traditional drug 
development, making them ideal candidates for low-
cost AI discovery. 
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