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Abstract:

The escalating sophistication of cyberattacks necessitates advanced intrusion detection systems beyond traditional
rule-based approaches. This paper presents a proof-of-concept dual-system architecture leveraging Large Language
Models (LLMs) for both retrospective forensic analysis and real-time network threat detection. Our architectural
contribution integrates: (1) an Offline RAG Forensic System utilizing Retrieval-Augmented Generation with
ChromaDB vector storage for semantic querying of historical incidents, and (2) a Real-Time Hybrid Heuristic-LLM
IDS combining lightweight rule-based pre-filtering with selective LLM analysis for ambiguous cases. The offline
system demonstrates 90% recall on forensic queries, while the real-time system achieves 91% accuracy in controlled
validation. Critically, heuristic rules handle most attack detections (port scans, floods), with LLM reasoning reserved
for complex reconnaissance patterns. We evaluate on UNSW-NB15 benchmark data and synthetically generated
attack flows, explicitly acknowledging these as controlled proof-of-concept validations rather than production
evaluations. The primary contribution is the novel complementary architecture addressing both forensic investigation
and active defense, a gap in existing unified frameworks, with future validation on live traffic and modern datasets
identified as essential next steps.

Keywords—Intrusion Detection Systems, Large Language Models, Explainable Al, Retrieval-Augmented Generation,
Network Security
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pr ol%feratlon of - interconnected dlgltal. systems, = posing significant potential for cybersecurity applications [8, 9]. LLMs
significant threats to governments, enterprises, and individuals demonstrate  strong  capabilities in  natural  language
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critical - defense me(.:ham’sm’ by o I}tlnuously monitoring making them suitable for interpreting complex network
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oftware-Detine etworking  ( ) has emerged as a [10]. Recent research has explored integrating LLMs with

proirrui}ngdparad:rgrlrl ford enhancing n%tlw ork tsecullsty lthrou%h traditional detection systems to enhance both accuracy and
centralized control and programmable network elements, 0. erability [11].

enabling more flexible intrusion detection approaches using
machine learning techniques [3]. The potential malicious use of A critical gap in existing research is the lack of unified
artificial intelligence technologies poses new challenges for ~ frameworks that address both retrospective forensic
cybersecurity, requiring advanced mitigation strategies and  investigation and real-time threat monitoring. Digital forensics
forecasting methods to counter Al-enabled attacks [4]. requires comprehensive analysis of historical network data to
reconstruct cyber incidents, while active defense demands
immediate detection and response capabilities. Furthermore,
the explainability of Al-generated findings is essential for legal
admissibility and analyst trust. This work addresses these
challenges by proposing a dual-system architecture that
leverages LLMs for both offline forensic analysis using
Retrieval-Augmented Generation (RAG) and real-time
intrusion detection with live packet capture.

Recent advancements in artificial intelligence have
catalyzed a paradigm shift toward deep learning architectures
for network intrusion detection. Deep learning approaches have
shown remarkable success in anomaly detection and diagnosis
from system logs, enabling automated identification of
complex system behaviors and potential security incidents [5].
Furthermore, integrating Explainable Al (XAI) techniques into
these hybrid frameworks has become essential for enhancing
model transparency and feature selection in complex
environments like SDN-based IoT networks [6]. However,
these models suffer from inherent opacity, their “black-box”
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Contributions: This paper makes the following key
contributions:

* A novel dual-system architecture addressing the gap in
unified frameworks for both offline forensic investigation and
real-time threat monitoring.

* A RAG-based forensic system grounding LLM responses
in historical incident data, reducing hallucination through
retrieval-augmented reasoning.

* A hybrid heuristic-LLM real-time architecture where
lightweight rules handle pattern-based attacks while LLM
reasoning addresses ambiguous cases, balancing accuracy with
API cost.

IL.

This section synthesizes insights from multiple research
papers spanning traditional machine learning, deep learning,
explainable Al, and LLM-based approaches for intrusion
detection. Each subsection highlights key methodologies and
advancements that form the foundation for our proposed
framework.

RELATED WORK

A. Traditional and Deep Learning Approaches

Early intrusion detection systems relied heavily on
signature-based methods and rule-based heuristics [12]. While
effective against known attacks, these approaches struggled
with novel threats. The introduction of machine learning
techniques improved generalization capabilities but remained
limited in handling high-dimensional, sequential network data
[2]. Deep learning revolutionized IDS research by enabling
automatic feature extraction from raw network traffic [5].
LSTM networks demonstrated particular promise for modeling
temporal patterns in network flows. However, the black-box
nature of deep neural networks raised concerns regarding
transparency [7].

B. Explainable Al in Intrusion Detection

SHAP and LIME have emerged as popular post-hoc
explanation methods for feature importance [13]. Autoencoder-
based deep neural networks have been successfully applied to
intrusion detection systems, particularly for small and medium-
sized enterprise (SME) cybersecurity environments [14]. Self-
attention mechanisms offer an alternative by highlighting
influential features during detection [15], [16]. Graph Neural
Networks model complex network topologies, with GNN-
attention  hybrids enhancing both performance and
interpretability [6, 11, 17].

C. Large Language Models in Cybersecurity

LLMs have opened new avenues for intelligent threat
analysis [8], [18]. Recent research leverages LLMs for
generating natural language explanations of detected anomalies
[10]. The XG-NID framework pioneered dual-modality
detection combining GNNs with LLM-generated explanations
[11]. Adversarial robustness remains a critical concern [19].

D. Research Gaps and Motivation

Most approaches address offline or real-time detection
separately, lacking unified frameworks. XAI techniques
provide feature-level explanations but fail to generate
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narrative-style threat descriptions. Existing LLM approaches
primarily use models as classifiers rather than leveraging
semantic reasoning through RAG. Our work addresses these
gaps with a dual system architecture combining RAG-based
forensic analysis with Real-Time LLM-IDS.

III.

This section details the design and implementation of our
dual-system framework. We first present the overall
architecture, followed by descriptions of the offline forensic
analysis pipeline and real-time detection system, and conclude
with the unified technology stack and prompt engineering
strategies.

METHODOLOGY

A. System Overview

Our proposed framework integrates two complementary
components: an Offline RAG Forensic System and a Real-
Time LLM-IDS. Both components leverage unified feature
engineering and employ LLM-based reasoning for contextual
threat detection. The data flow paths are:

Offline Path: CSV dataset — Stratified sampling — Text
conversion — Embedding generation — ChromaDB storage —
User query — Vector retrieval — LLM analysis — Results
display

Real-Time Path: Live network — Packet capture — Flow
aggregation — Feature extraction — Heuristic pre-filter — (If
suspicious) Deep LLM analysis — Alert generation —
Dashboard display

B. Dataset Description

Both systems are evaluated using the UNSW-NB15 dataset
[20], a contemporary benchmark containing realistic network
traffic with modern attack scenarios. Table I summarizes the
dataset characteristics.

The dataset includes nine attack categories: Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, and Worms. Despite its age, UNSW-NB15 remains
widely adopted in IDS research due to its labeled attack

diversity, realistic traffic generation methodology, and
comprehensive feature set, making it suitable for controlled
evaluation of semantic reasoning capabilities. Data

preprocessing involves feature selection, normalization, text
template generation for LLM processing, and stratified
sampling for balanced representation.

TABLE 1
UNSW-NB15 DATASET CHARACTERISTICS

Characteristic Value
Total Records 2.5 million
Total Features 49

Attack Categories 9

Normal Traffic Records
Attack Traffic Records
Protocols Covered
Services Included
Time Period

~2.2 million (87%)

~321,000 (13%)

TCP, UDP, ICMP, ARP

HTTP, HTTPS, SSH, FTP, DNS, SMTP
January 2015 — February 2015
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Fig. 1. Offline RAG Forensic System Architecture

C. Offline Forensic Analysis Pipeline

The offline component implements a Retrieval-Augmented
Generation (RAG) workflow supporting comprehensive
forensic investigation. RAG is particularly suited for network
forensics because: (1) it grounds LLM responses in actual
historical incidents rather than relying solely on pre-trained
knowledge, reducing hallucination; (2) it enables semantic
similarity search across massive flow databases, surfacing
relevant precedents that keyword search would miss; and (3) it
provides citation-ready evidence by linking classifications to
specific retrieved records. Figure 1 illustrates the complete
system architecture. The pipeline consists of:

Vector Database Construction: Network flow records are
converted to natural language descriptions by mapping feature
names to human-readable labels (e.g., “sbytes” becomes
“Source to destination transaction bytes”). These descriptions
are embedded using sentence-transformers/all-MiniLM-L6-v2
(384 dimensions) and indexed in ChromaDB using L2 distance
(equivalent to cosine similarity for normalized embeddings).
The database stores 40,000 pre-processed flow records with
associated metadata, enabling sub-second retrieval for forensic
queries.

Query Processing: During forensic analysis, analysts
submit queries describing suspected incidents or traffic
patterns. The system retrieves the top-k most semantically
similar historical instances, providing contextual precedents for
threat assessment. Example forensic queries include:

“Show reconnaissance attempts targeting DNS services”

“Find high-volume data transfers that may indicate
exfiltration”

“What exploit attempts targeted HTTP services on port
807"

“Compare TCP vs UDP traffic patterns for anomaly
detection”

LLM-Based Analysis: Retrieved examples are
concatenated with the query and fed to Google Gemini 3
Flash via LangChain. The LLM performs contextual
reasoning, identifying attack patterns, generating threat
classifications, and producing narrative explanations that
synthesize historical context with current observations.

D. Real-Time Detection Pipeline

The real-time component processes live packet streams
using a multi-stage detection architecture as shown in Figure
2.
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Fig. 2. Real-Time LLM-IDS Architecture

Packet Capture: Scapy library captures raw packets from
network interfaces with minimal overhead.

Flow Aggregation: Packets are aggregated into
bidirectional flows identified by 5-tuple (source IP, destination
IP, source port, destination port, protocol). Each flow
maintains state including packet counts, byte distributions,
timing statistics, and TCP flags.

Feature Extraction: Over 30 behavioral features are
computed per flow, including:

» Statistical: mean packet size, byte rate, inter-arrival time

variance.

* Protocol-specific: TCP flag distributions, SYN/ACK

ratios, window sizes.

* Behavioral: connection duration, payload characteristics,

port patterns.

Heuristic Pre-filtering: A lightweight rule-based filter
classifies obvious attack patterns before LLM invocation. The
heuristic function H(f) returns Attack if any condition holds:

Attack ifS=5AP=1

Attack ifR>0.ANg>0,ANN,=0
H(f) = { Attack if R >0, Am e {UDP,ICMP}

Attack ifD>0;,ANR <1

Ambiguous otherwise

where S is connection state, P is packet count, R is
packets/second, N¢/N, are SYN/ACK counts, 7 is protocol,
and D is duration. Thresholds (0; = 100, 65 = 10, 64 = 60s)
were empirically selected based on exploratory analysis of
UNSW-NBI15 flow statistics and common IDS heuristics in
prior work. The conditions encode signatures for single-
packet scans, SYN floods, volumetric UDP/ICMP floods,
and Slowloris-style long-lived connections.

Detection Attribution: We explicitly note that the
heuristic rules handle most attack detections in our
evaluation: port scans (97% recall), SYN/UDP/ICMP
floods (97-98% recall), and Slowloris attacks (97% recall)
are classified entirely by pattern matching. The LLM is
invoked only for ambiguous flows, primarily
reconnaissance attempts where it achieves 88% recall. This
design reflects a practical hybrid architecture rather than
pure LLM-based detection. Flows classified as Attack by
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heuristics bypass LLM; only Ambiguous flows require
semantic evaluation, reducing API costs by approximately
70% in our tests.

LLM-Based Classification: Unlike the offline RAG
system, the real-time pipeline uses direct LLM inference
without vector retrieval (too slow for streaming).
Ambiguous flows are converted to text descriptions and
sent to the LLM, which outputs threat labels, confidence
scores, key indicators, and recommended mitigations.

Real-Time Dashboard: A web-based interface
provides live visualization of traffic statistics, detected
threats, and system metrics with one-second refresh

intervals.
E. Unified Technology Stack

To ensure consistency and maintainability, both offline and
real-time components share a common technological
foundation:

* Embedding Model: Sentence-transformers/all-MiniLM L6-
v2 producing 384-dimensional vectors.

* Vector Database (Offline only): ChromaDB using L2
distance (equivalent to cosine for normalized embeddings),
retrieving k=15 nearest neighbors; the real-time system uses
direct LLM inference without retrieval.

* LLM Backend: Google Gemini 3 Flash accessed via
LangChain.

* Feature Extraction: Python-based flow analyzer with 30+
behavioral metrics.

* Implementation: Modular Python codebase with extensible
architecture.

F. Prompt Engineering and Output Parsing

Both systems utilize structured prompt templates framing
the LLM as an expert cybersecurity analyst. The offline system
prompts require responses with: “Classification (Category) and
Confidence (Level)”, followed by “Why” (indicators) and
“Mitigations”, where categories match UNSW-NBIS5 labels.
The real-time system uses a more detailed format with separate
“Threat Level” (Critical/High/Medium/Low/Normal),
“Classification”, “Confidence”, “Key Indicators”’, and
“Recommended Actions” fields.

Output parsing employs keyword matching to extract
classifications. For binary evaluation, all non-Normal labels
map to the “Attack” class. When parsing fails to identify a
clear classification, the system counts indicator keywords (e.g.,
“malicious”, “threat”, “benign”) and classifies based on
majority. Prompts include instructions requiring evidence-
backed conclusions citing specific feature values from input
data.

Example Output (Offline): For the query “Find connections
with unusual TTL values suggesting spoofing,” the system
generates:

Classification: DoS (Medium Confidence). Key Indicators:
Source TTL of 254 detected in record 118845—unusually high
for typical clients (64-Linux, 128-Windows), suggesting router-
level origin or IP spoofing. Traffic asymmetry observed:
20,964 source bytes vs 354 destination bytes with 22 outbound
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packets. Mitigations: (1) Block source IP at firewall, (2) Apply
rate limiting, (3) Review IDS/IPS logs for similar TTL patterns,
(4) Coordinate with upstream providers for BGP blackholing if
spoofing confirmed.

G. Evaluation Metrics

To rigorously assess both systems,
comprehensive set of evaluation metrics.
performance is quantified using standard metrics:

* Accuracy: Overall correctness of predictions.

* Precision: Reliability of positive predictions.

* Recall: Sensitivity in detecting actual attacks.

* F1-Score: Harmonic mean of precision and recall.

* Specificity: True negative rate for normal traffic.

we employ a
Classification

Additionally, we measure operational metrics including
latency per query, throughput (packets/flows per second),
memory consumption, and CPU utilization. Qualitative
evaluation assesses interpretability, contextual correctness of
explanations, and relevance of retrieved historical examples.

IV. PROOF-OF-CONCEPT VALIDATION

This section presents evaluation results demonstrating
architectural feasibility for both the Offline RAG Forensic
System and the Real-Time Hybrid Heuristic-LLM IDS. The
offline system is evaluated using UNSW-NB15 benchmark
data, while the real-time system is tested on synthetically
generated attack flows. These results constitute controlled
proof-of-concept validation rather than production-ready
performance claims. We assess classification performance,
operational efficiency, and system behavior across diverse
attack scenarios.

A. Offline System Evaluation

The offline system is designed for retrospective forensic
investigation, enabling security analysts to query historical
network traffic patterns and identify threats through semantic
similarity search.

1) Dataset and Evaluation Setup: The Offline RAG
Forensic System embeds 40,000 network flow records from
UNSW-NB15 into ChromaDB for comprehensive historical
analysis. For performance evaluation, we tested the system on
500 stratified query samples with balanced distribution (250
attack instances, 250 normal flows). Protocol analysis showed
TCP dominance, followed by UDP and ICMP traffic.

2) Traffic Behavior and Threat Categorization: Analysis
revealed distinct behavioral signatures: attack flows exhibited
longer durations, higher byte volumes, and varied TTL patterns
suggesting IP spoofing. DNS, HTTP/HTTPS, and ICMP
emerged as primary attack vectors. The LLM successfully
categorized threats into Exploits, Reconnaissance, DoS, and
Generic classes based on these behavioral patterns.

3) Classification Performance: Table 1II presents
comprehensive offline evaluation metrics derived from
confusion matrix analysis ensuring mathematical consistency.
The system achieved 65.0% overall accuracy with 60.0%
precision. Notably, recall reached 90.0%, demonstrating high
sensitivity in attack detection, a critical requirement for
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security systems where missing attacks carries severe
consequences. The Fl-score of 72.0% indicates balanced
performance. The 15-19 seconds of query latency is acceptable
in forensic and threat-hunting workflows, where analysts
prioritize depth of analysis and contextual understanding over
immediacy. The 60% false positive rate (150 false alarms from
250 normal queries) represents a deliberate trade-off
prioritizing  attack  detection  sensitivity. In  forensic
investigations, analysts have time to manually review flagged
incidents, making higher FPR acceptable compared to real-time
systems. Security teams typically prefer over-alerting during
retrospective analysis to avoid missing critical incidents.

TABLE II
OFFLINE SYSTEM EVALUATION METRICS (500 TEST QUERIES)

Metric Value Description

True Positives 225 Correctly detected attacks
True Negatives 100 Correctly identified normal
False Positives 150 False alarms

False Negatives 25 Missed attacks

Accuracy 65.0% Overall correctness

Precision 60.0%  Attack prediction reliability
Recall 90.0% Attack detection sensitivity
F1-Score 72.0% Balanced measure
Specificity 40.0% Normal traffic detection

FPR 60.0%  False positive rate (1-Specificity)
FNR 10.0% False negative rate (1-Recall)
Latency 15-19s  Per-query response time

B. Real-Time System Evaluation

The real-time system is designed for continuous network
monitoring, providing immediate threat detection and alerting
capabilities for active defense scenarios. The evaluation
focuses on per-flow detection accuracy and latency rather than
long-duration traffic replay, which is left for future large-scale
deployment studies.

1) Evaluation Methodology and Limitations: Important
Caveat: The real-time system evaluation uses synthetically
generated attack flows rather than live packet capture. This
constitutes proof-of-concept validation of the detection
pipeline logic, not production-ready evaluation.

We generated 500 synthetic network flows with
characteristic ~ attack  signatures. Each  flow  was
programmatically constructed with features matching known
attack patterns: port scans exhibit half-open connections with
single SYN packets; SYN floods show high packet rates with
multiple SYNs and no ACKs; UDP/ICMP floods display
elevated packets-per-second ratios; Slowloris attacks feature
long durations with minimal activity; and reconnaissance
attempts show exploratory connection patterns.

Circular Reasoning Acknowledgment: We explicitly
acknowledge that testing on flows designed with
“characteristic attack signatures” introduces a degree of
circular reasoning, the system detects patterns it was
specifically designed to detect. The high detection rates (97—
98%) for heuristic-classified attacks reflect this controlled
validation scenario. Real-world traffic exhibits greater
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variability, noise, and adversarial evasion attempts that would
likely reduce these metrics.

Generated flows were processed through the complete
detection pipeline: heuristic pre-filtering followed by LLM
analysis for ambiguous cases. While Scapy integration for live
packet capture is implemented, this evaluation does not
demonstrate live traffic performance. Production validation
with actual UNSW-NB15 flows replayed through the network
stack, or deployment on live enterprise traffic, remains
essential future work.

2) Operational Performance: The real-time system was
benchmarked on Windows 10 with Intel Core i5-9300H (2.4
GHz base, 4.1 GHz boost, 4 cores/8 threads), 16GB DDR4
2666 RAM, and NVIDIA GTX 1650 GPU (4GB VRAM,
CUDA-enabled). Key operational metrics include:

» Capture and Aggregation: Sustained packet capture and
flow aggregation without loss.

* Heuristic Filtering: Near-instantaneous classification (for
pattern-based attacks).

* LLM Analysis: 2-3 seconds for ambiguous flows requiring
semantic evaluation.

* Dashboard Refresh: 1-second real-time updates.

* Memory Usage: 200-300 MB stable consumption.

The heuristic pre-filter handles most flows instantly, with
LLM invoked selectively for ambiguous cases. Production
deployment with high traffic volumes would require flow
queuing or parallel LLM workers.

3) Attack-Specific Detection Accuracy: Table III presents
detection performance across six attack categories evaluated
on 500 network flows. Port scanning and flooding attacks
achieved near-perfect detection (97-98% recall) through
pattern-based heuristics. Reconnaissance detection showed
88% recall with 78% precision, reflecting the complexity of
distinguishing exploratory traffic from normal browsing. The
hybrid heuristic-LLM approach achieved 91% overall
accuracy with 95% attack recall. The 25% false positive rate
reflects a recall-oriented design, prioritizing attack sensitivity
in security operations where missed attacks are more costly
than additional alerts requiring analyst review.

TABLE IIT
REAL-TIME DETECTION PERFORMANCE BY ATTACK TYPE (N=500
SYNTHETIC FLOWS; PROOF-OF-CONCEPT VALIDATION)

Attack Type Detection Method Precision  Recall F1
Port Scan SYN sequence analysis 96% 97%  96%
SYN Flood High-rate SYN flagging 97% 98%  98%
UDP Flood Rate + port randomness 95% 9%  96%
ICMP Flood Type-rate correlation 96% 98%  97%
Reconnaissance LLM pattern inference 78% 88%  83%
Slowloris Session duration analysis 93% 97%  95%
Attack Detection Hybrid + LLM 94% 95%  94%
Overall Accuracy  Hybrid + LLM 91%

False Positive Rate  — 25%
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C. Architectural Comparison

Table IV contrasts the two systems, demonstrating
complementary design goals for forensic investigation and
active defense. Note that evaluation conditions differ: the
offline system uses benchmark data while the real-time system
uses synthetic flows (proof-of-concept).

TABLE IV
SYSTEM COMPARISON: OFFLINE RAG vS REAL-TIME HYBRID
HEURISTIC-LLM

Aspect Offline Real-Time
Purpose Historical analysis Live detection
Data Source UNSW-NB15 Synthetic flows
Processing Batch queries Streaming

RAG + ChromaDB
40,000 flows

500 test queries
15-19 seconds

Scapy + Heuristics + LLM
N/A (streaming)

500 test flows

2-3 seconds (LLM)

Core Engine

Vector DB Size
Evaluation Size
Response Time

Detection 90% recall, 65% acc  91% acc, 95% attack recall
Strength Deep context Immediate alerts
Use Case Forensics Active defense

D. Comparison with Traditional Methods

Table V provides context by showing the traditional
supervised machine learning classifiers trained on UNSW-
NBI15.

TABLE V
CONTEXT: TRADITIONAL ML ON UNSW-NB15 (NOT DIRECT
COMPARISON). TRADITIONAL METHODS: SUPERVISED PER-FLOW
CLASSIFICATION WITH LABELED TRAINING. QOURS (OFFLINE): ZERO-SHOT
QUERY-DRIVEN FORENSIC REASONING. OURS (REAL-TIME): HYBRID
HEURISTIC-LLM ON SYNTHETIC FLOWS. THESE PARADIGMS ARE
FUNDAMENTALLY DIFFERENT AND DIRECT NUMERICAL COMPARISON IS

INAPPROPRIATE.

Method Acc. Prec.  Recall F1

Random Forest 96.0% 964% 97.7% 97.1%
Decision Tree 949%  964% 96.1%  96.2%
Gradient Boosting 94.6% 943% 98.1% 96.1%
K-Nearest Neighbors ~ 93.8% 94.8% 962% 95.5%
Logistic Regression 934% 920% 989% 953%
Naive Bayes 86.8% 89.7% 91.1% 90.4%
Ours (Offline RAG) 65.0% 60.0% 90.0% 72.0%
Ours (Real-Time) 91.0% 94.0% 950% 94.0%

Critical caveat: Direct numerical comparison between these
paradigms is fundamentally inappropriate; they solve different
tasks under different conditions.

 Traditional ML: Supervised per-flow binary classification
with labeled training data, optimized for accuracy on the same
distribution.

* Ours (Offline): Zero-shot query-driven forensic retrieval
and reasoning, no training on UNSW-NBI5, evaluated on
analyst-style natural language queries.

* Ours (Real-Time): Hybrid heuristic-LLM detection on
synthetic flows, not the UNSW-NB15 test set.

While supervised methods achieve higher classification
accuracy (86-96%), they require labeled training data, offer
limited interpretability, and cannot adapt to novel threats
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without retraining. In contrast, our approach deliberately
trades raw classification performance for several key
advantages: (1) zero-shot generalization, (2) human-readable
explanations, (3) semantic reasoning over network behaviours,
and (4) adaptability to previously unseen attack patterns. The
term zero-shot should not be overstated, as large language
models are pre-trained on corpora that likely include
cybersecurity-related discussions, thereby providing implicit
domain knowledge rather than true absence of prior exposure.

V. LIMITATIONS AND DISCUSSION

A. Evaluation Limitations

This work presents proof-of-concept validation with
explicit limitations:

Synthetic Flow Testing: The real-time system is
evaluated on synthetically generated attack flows with
characteristic signatures. This validates detection pipeline
logic but does not demonstrate performance on live network
traffic or adversarially crafted evasion attempts. Future work
must include: (a) replay of actual UNSW-NB15 flows through
the network stack, (b) live traffic deployment, and (c)
adversarial robustness testing.

Offline Query Methodology: The 500 test queries were
constructed to match forensic analyst workflows, but their
generation methodology warrants transparency. Queries target
known attack patterns in the indexed database, and the
evaluation measures retrieval-augmented reasoning rather than
traditional classification. No train/test contamination exists
(queries are natural language, not flow records), but retrieved
targets may overlap with indexed content.

Heuristic Dominance: As quantified in Section III,
heuristic rules handle the majority of attack detections (97-
98% recall for floods and scans). The LLM’s unique
contribution is limited to reconnaissance detection (88%
recall) and explanation generation. Claims of “LLM-based
detection” should be understood as ‘“hybrid heuristic-LLM
detection.”

B. Technical Limitations

Dependence on cloud-based LLM APIs introduces
recurring costs and 2-3 second latency per analysis, which
may be prohibitive for high-throughput or ultra-low-latency
environments.  Heuristic  pre-filtering  reduces LLM
invocations by approximately 70%, and local deployment
options (e.g., Ollama) exist for cost-sensitive scenarios.

LLM-based detection may be vulnerable to adversarial
techniques, including crafted evasion patterns and prompt
injection attacks. LLM-generated explanations, while
enhancing interpretability, may occasionally produce plausible
but inaccurate reasoning (hallucination), necessitating human
oversight for critical decisions.

C. Dataset and Generalization

The UNSW-NBI15 dataset dates to 2015 and does not
capture modern threats such as Log4Shell exploits, supply
chain attacks, encrypted malware command-and-control, or
Al-generated attack patterns. Validation on contemporary
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datasets (CIC-IDS2017, CSE-CIC-IDS2018, or proprietary
enterprise traffic) is essential before production deployment.
The current prototype uses ChromaDB with limited
production scalability and a basic RAG pipeline lacking
hybrid search, query rewriting, and re-ranking techniques.

VL

This work presents a proof-of-concept dual-system
architecture leveraging Large Language Models for both
offline forensic analysis and real-time intrusion detection. The
primary contribution is architectural: addressing the gap in
unified frameworks that combine retrospective forensic
investigation with active threat monitoring. The offline RAG
system grounds LLM responses in historical incident data,
while the real-time hybrid system balances heuristic efficiency
with LLM reasoning for ambiguous cases.

Empirical results should be interpreted as feasibility
validation: The offline system demonstrates 90% recall on
forensic queries, and the real-time system achieves 91%
accuracy, but these metrics reflect controlled proof-of-concept
testing on benchmark data and synthetic flows, not production
conditions. Critically, heuristic rules handle most real-time

CONCLUSION AND FUTURE WORK

detections; the LLM’s wunique contribution lies in
reconnaissance detection and explanation generation.
LLM-based approaches offer zero-shot adaptability,

semantic understanding, and explainable outputs. However,
organizations should combine heuristic filters with selective
LLM analysis, maintain human oversight for critical decisions,
and validate on their specific traffic patterns before
deployment.

Essential future work includes: (1) live traffic validation
with actual UNSW-NB15 flows replayed through the network
stack; (2) evaluation on modern datasets (CIC-IDS2017, CSE-
CIC-IDS2018) capturing contemporary threats; (3) expert
evaluation of explanation quality; (4) adversarial robustness
testing against evasion techniques; and (5) cost analysis with
actual API pricing. Technical improvements involve migrating
to scalable vector databases (Qdrant, Milvus, Weaviate),
implementing advanced RAG techniques (hybrid search, re-
ranking), and enterprise SIEM integration. Implementation
code and evaluation scripts will be released to facilitate
reproducibility.
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