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Abstract: 
The escalating sophistication of cyberattacks necessitates advanced intrusion detection systems beyond traditional 

rule-based approaches. This paper presents a proof-of-concept dual-system architecture leveraging Large Language 

Models (LLMs) for both retrospective forensic analysis and real-time network threat detection. Our architectural 
contribution integrates: (1) an Offline RAG Forensic System utilizing Retrieval-Augmented Generation with 

ChromaDB vector storage for semantic querying of historical incidents, and (2) a Real-Time Hybrid Heuristic-LLM 

IDS combining lightweight rule-based pre-filtering with selective LLM analysis for ambiguous cases. The offline 
system demonstrates 90% recall on forensic queries, while the real-time system achieves 91% accuracy in controlled 

validation. Critically, heuristic rules handle most attack detections (port scans, floods), with LLM reasoning reserved 

for complex reconnaissance patterns. We evaluate on UNSW-NB15 benchmark data and synthetically generated 

attack flows, explicitly acknowledging these as controlled proof-of-concept validations rather than production 
evaluations. The primary contribution is the novel complementary architecture addressing both forensic investigation 

and active defense, a gap in existing unified frameworks, with future validation on live traffic and modern datasets 

identified as essential next steps. 
 

Keywords—Intrusion Detection Systems, Large Language Models, Explainable AI, Retrieval-Augmented Generation, 

Network Security 

I. INTRODUCTION 

Cyberattacks have escalated dramatically with the 
proliferation of interconnected digital systems, posing 
significant threats to governments, enterprises, and individuals 
worldwide. An Intrusion Detection System (IDS) serves as a 
critical defense mechanism by continuously monitoring 
network traffic and identifying malicious patterns [1], [2]. 
Software-Defined Networking (SDN) has emerged as a 
promising paradigm for enhancing network security through 
centralized control and programmable network elements, 
enabling more flexible intrusion detection approaches using 
machine learning techniques [3]. The potential malicious use of 
artificial intelligence technologies poses new challenges for 
cybersecurity, requiring advanced mitigation strategies and 
forecasting methods to counter AI-enabled attacks [4]. 

Recent advancements in artificial intelligence have 
catalyzed a paradigm shift toward deep learning architectures 
for network intrusion detection. Deep learning approaches have 
shown remarkable success in anomaly detection and diagnosis 
from system logs, enabling automated identification of 
complex system behaviors and potential security incidents [5]. 
Furthermore, integrating Explainable AI (XAI) techniques into 
these hybrid frameworks has become essential for enhancing 
model transparency and feature selection in complex 
environments like SDN-based IoT networks [6]. However, 
these models suffer from inherent opacity, their “black-box” 

nature impedes understanding of decision-making processes 
[7]. 

The advent of Large Language Models (LLMs) has shown 
significant potential for cybersecurity applications [8, 9]. LLMs 
demonstrate strong capabilities in natural language 
understanding, contextual reasoning, and knowledge synthesis, 
making them suitable for interpreting complex network 
behaviors and generating human-readable threat explanations 
[10]. Recent research has explored integrating LLMs with 
traditional detection systems to enhance both accuracy and 
interpretability [11]. 

A critical gap in existing research is the lack of unified 
frameworks that address both retrospective forensic 
investigation and real-time threat monitoring. Digital forensics 
requires comprehensive analysis of historical network data to 
reconstruct cyber incidents, while active defense demands 
immediate detection and response capabilities. Furthermore, 
the explainability of AI-generated findings is essential for legal 
admissibility and analyst trust. This work addresses these 
challenges by proposing a dual-system architecture that 
leverages LLMs for both offline forensic analysis using 
Retrieval-Augmented Generation (RAG) and real-time 
intrusion detection with live packet capture. 
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Contributions: This paper makes the following key 
contributions: 

• A novel dual-system architecture addressing the gap in 
unified frameworks for both offline forensic investigation and 
real-time threat monitoring. 

• A RAG-based forensic system grounding LLM responses 
in historical incident data, reducing hallucination through 
retrieval-augmented reasoning. 

• A hybrid heuristic-LLM real-time architecture where 
lightweight rules handle pattern-based attacks while LLM 
reasoning addresses ambiguous cases, balancing accuracy with 
API cost. 

II. RELATED WORK 

This section synthesizes insights from multiple research 
papers spanning traditional machine learning, deep learning, 
explainable AI, and LLM-based approaches for intrusion 
detection. Each subsection highlights key methodologies and 
advancements that form the foundation for our proposed 
framework. 

A. Traditional and Deep Learning Approaches 

Early intrusion detection systems relied heavily on 
signature-based methods and rule-based heuristics [12]. While 
effective against known attacks, these approaches struggled 
with novel threats. The introduction of machine learning 
techniques improved generalization capabilities but remained 
limited in handling high-dimensional, sequential network data 
[2]. Deep learning revolutionized IDS research by enabling 
automatic feature extraction from raw network traffic [5]. 
LSTM networks demonstrated particular promise for modeling 
temporal patterns in network flows. However, the black-box 
nature of deep neural networks raised concerns regarding 
transparency [7]. 

B. Explainable AI in Intrusion Detection 

SHAP and LIME have emerged as popular post-hoc 
explanation methods for feature importance [13]. Autoencoder-
based deep neural networks have been successfully applied to 
intrusion detection systems, particularly for small and medium-
sized enterprise (SME) cybersecurity environments [14]. Self-
attention mechanisms offer an alternative by highlighting 
influential features during detection [15], [16]. Graph Neural 
Networks model complex network topologies, with GNN-
attention hybrids enhancing both performance and 
interpretability [6, 11, 17]. 

C. Large Language Models in Cybersecurity 

LLMs have opened new avenues for intelligent threat 
analysis [8], [18]. Recent research leverages LLMs for 
generating natural language explanations of detected anomalies 
[10]. The XG-NID framework pioneered dual-modality 
detection combining GNNs with LLM-generated explanations 
[11]. Adversarial robustness remains a critical concern [19]. 

D. Research Gaps and Motivation 

Most approaches address offline or real-time detection 
separately, lacking unified frameworks. XAI techniques 
provide feature-level explanations but fail to generate 

narrative-style threat descriptions. Existing LLM approaches 
primarily use models as classifiers rather than leveraging 
semantic reasoning through RAG. Our work addresses these 
gaps with a dual system architecture combining RAG-based 
forensic analysis with Real-Time LLM-IDS. 

III. METHODOLOGY 

This section details the design and implementation of our 
dual-system framework. We first present the overall 
architecture, followed by descriptions of the offline forensic 
analysis pipeline and real-time detection system, and conclude 
with the unified technology stack and prompt engineering 
strategies. 

A. System Overview 

Our proposed framework integrates two complementary 
components: an Offline RAG Forensic System and a Real-
Time LLM-IDS. Both components leverage unified feature 
engineering and employ LLM-based reasoning for contextual 
threat detection. The data flow paths are:  

Offline Path: CSV dataset → Stratified sampling → Text 
conversion → Embedding generation → ChromaDB storage → 
User query → Vector retrieval → LLM analysis → Results 
display  

Real-Time Path: Live network → Packet capture → Flow 
aggregation → Feature extraction → Heuristic pre-filter → (If 
suspicious) Deep LLM analysis → Alert generation → 
Dashboard display 

B. Dataset Description 

Both systems are evaluated using the UNSW-NB15 dataset 
[20], a contemporary benchmark containing realistic network 
traffic with modern attack scenarios. Table I summarizes the 
dataset characteristics.  

 The dataset includes nine attack categories: Fuzzers, 
Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, 
Shellcode, and Worms. Despite its age, UNSW-NB15 remains 
widely adopted in IDS research due to its labeled attack 
diversity, realistic traffic generation methodology, and 
comprehensive feature set, making it suitable for controlled 
evaluation of semantic reasoning capabilities. Data 
preprocessing involves feature selection, normalization, text 
template generation for LLM processing, and stratified 
sampling for balanced representation. 

 

 

 

 

 

 

 

 

 

 



International Journal of Advanced Multidisciplinary Research and Educational Development 
Volume 2, Issue 1 | January – February 2026 | www.ijamred.com 

ISSN: 3107-6513 
 

 

 

 

172 

 

 

 

 

 

 

 

 

C. Offline Forensic Analysis Pipeline 

 The offline component implements a Retrieval-Augmented 
Generation (RAG) workflow supporting comprehensive 
forensic investigation. RAG is particularly suited for network 
forensics because: (1) it grounds LLM responses in actual 
historical incidents rather than relying solely on pre-trained 
knowledge, reducing hallucination; (2) it enables semantic 
similarity search across massive flow databases, surfacing 
relevant precedents that keyword search would miss; and (3) it 
provides citation-ready evidence by linking classifications to 
specific retrieved records. Figure 1 illustrates the complete 
system architecture. The pipeline consists of: 

 Vector Database Construction: Network flow records are 
converted to natural language descriptions by mapping feature 
names to human-readable labels (e.g., “sbytes” becomes 
“Source to destination transaction bytes”). These descriptions 
are embedded using sentence-transformers/all-MiniLM-L6-v2  
(384 dimensions) and indexed in ChromaDB using L2 distance 
(equivalent to cosine similarity for normalized embeddings). 
The database stores 40,000 pre-processed flow records with 
associated metadata, enabling sub-second retrieval for forensic 
queries.  

 Query Processing: During forensic analysis, analysts 
submit queries describing suspected incidents or traffic 
patterns. The system retrieves the top-k most semantically 
similar historical instances, providing contextual precedents for 
threat assessment. Example forensic queries include: 

     “Show reconnaissance attempts targeting DNS services”  

“Find high-volume data transfers that may indicate 
exfiltration”  

“What exploit attempts targeted HTTP services on port 
80?”  

“Compare TCP vs UDP traffic patterns for anomaly 
detection”   

 LLM-Based Analysis: Retrieved examples are 
concatenated with the query and fed to Google Gemini 3 
Flash via LangChain. The LLM performs contextual 
reasoning, identifying attack patterns, generating threat 
classifications, and producing narrative explanations that 
synthesize historical context with current observations. 

 

D. Real-Time Detection Pipeline 

The real-time component processes live packet streams 
using a multi-stage detection architecture as shown in Figure 

2.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Packet Capture: Scapy library captures raw packets from 

network interfaces with minimal overhead.  

Flow Aggregation: Packets are aggregated into 

bidirectional flows identified by 5-tuple (source IP, destination 

IP, source port, destination port, protocol). Each flow 

maintains state including packet counts, byte distributions, 

timing statistics, and TCP flags. 

Feature Extraction: Over 30 behavioral features are 
computed per flow, including: 

• Statistical: mean packet size, byte rate, inter-arrival time 

variance. 

• Protocol-specific: TCP flag distributions, SYN/ACK 

ratios, window sizes. 

• Behavioral: connection duration, payload characteristics, 

port patterns. 

 

Heuristic Pre-filtering: A lightweight rule-based filter 

classifies obvious attack patterns before LLM invocation. The 

heuristic function H(f) returns Attack if any condition holds: 
 

 

 

 

 

 

 

 
 

where S is connection state, P is packet count, R is 
packets/second, Ns/Na are SYN/ACK counts, π is protocol, 
and D is duration. Thresholds (θr = 100, θs = 10, θd = 60s) 
were empirically selected based on exploratory analysis of 
UNSW-NB15 flow statistics and common IDS heuristics in 
prior work. The conditions encode signatures for single-
packet scans, SYN floods, volumetric UDP/ICMP floods, 
and Slowloris-style long-lived connections. 

 Detection Attribution: We explicitly note that the 
heuristic rules handle most attack detections in our 
evaluation: port scans (97% recall), SYN/UDP/ICMP 
floods (97-98% recall), and Slowloris attacks (97% recall) 
are classified entirely by pattern matching. The LLM is 
invoked only for ambiguous flows, primarily 
reconnaissance attempts where it achieves 88% recall. This 
design reflects a practical hybrid architecture rather than 
pure LLM-based detection. Flows classified as Attack by 
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heuristics bypass LLM; only Ambiguous flows require 
semantic evaluation, reducing API costs by approximately 
70% in our tests. 

  LLM-Based Classification: Unlike the offline RAG 
system, the real-time pipeline uses direct LLM inference 
without vector retrieval (too slow for streaming). 
Ambiguous flows are converted to text descriptions and 
sent to the LLM, which outputs threat labels, confidence 
scores, key indicators, and recommended mitigations.  

 Real-Time Dashboard: A web-based interface 
provides live visualization of traffic statistics, detected 
threats, and system metrics with one-second refresh 
intervals. 

E. Unified Technology Stack 

To ensure consistency and maintainability, both offline and 
real-time components share a common technological 
foundation:  

• Embedding Model: Sentence-transformers/all-MiniLM L6-
v2 producing 384-dimensional vectors. 

• Vector Database (Offline only): ChromaDB using L2 
distance (equivalent to cosine for normalized embeddings), 
retrieving k=15 nearest neighbors; the real-time system uses 
direct LLM inference without retrieval. 

• LLM Backend: Google Gemini 3 Flash accessed via 
LangChain. 

• Feature Extraction: Python-based flow analyzer with 30+ 
behavioral metrics. 

• Implementation: Modular Python codebase with extensible 
architecture. 

F. Prompt Engineering and Output Parsing 

Both systems utilize structured prompt templates framing 
the LLM as an expert cybersecurity analyst. The offline system 
prompts require responses with: “Classification (Category) and 
Confidence (Level)”, followed by “Why” (indicators) and 
“Mitigations”, where categories match UNSW-NB15 labels. 
The real-time system uses a more detailed format with separate 
“Threat Level” (Critical/High/Medium/Low/Normal), 
“Classification”, “Confidence”, “Key Indicators”, and 
“Recommended Actions” fields.  

 Output parsing employs keyword matching to extract 
classifications. For binary evaluation, all non-Normal labels 
map to the “Attack” class. When parsing fails to identify a 
clear classification, the system counts indicator keywords (e.g., 
“malicious”, “threat”, “benign”) and classifies based on 
majority. Prompts include instructions requiring evidence-
backed conclusions citing specific feature values from input 
data. 

   Example Output (Offline): For the query “Find connections 
with unusual TTL values suggesting spoofing,” the system 
generates: 

Classification: DoS (Medium Confidence). Key Indicators: 
Source TTL of 254 detected in record 118845—unusually high 
for typical clients (64-Linux, 128-Windows), suggesting router-
level origin or IP spoofing. Traffic asymmetry observed: 
20,964 source bytes vs 354 destination bytes with 22 outbound 

packets. Mitigations: (1) Block source IP at firewall, (2) Apply 
rate limiting, (3) Review IDS/IPS logs for similar TTL patterns, 
(4) Coordinate with upstream providers for BGP blackholing if 
spoofing confirmed. 

G. Evaluation Metrics 

To rigorously assess both systems, we employ a 

comprehensive set of evaluation metrics. Classification 

performance is quantified using standard metrics:  

•   Accuracy: Overall correctness of predictions. 

•   Precision: Reliability of positive predictions. 
•   Recall: Sensitivity in detecting actual attacks. 

•   F1-Score: Harmonic mean of precision and recall. 

• Specificity: True negative rate for normal traffic. 

 

Additionally, we measure operational metrics including 

latency per query, throughput (packets/flows per second), 

memory consumption, and CPU utilization. Qualitative 

evaluation assesses interpretability, contextual correctness of 

explanations, and relevance of retrieved historical examples. 

 

IV. PROOF-OF-CONCEPT VALIDATION 

 This section presents evaluation results demonstrating 
architectural feasibility for both the Offline RAG Forensic 
System and the Real-Time Hybrid Heuristic-LLM IDS. The 
offline system is evaluated using UNSW-NB15 benchmark 
data, while the real-time system is tested on synthetically 
generated attack flows. These results constitute controlled 
proof-of-concept validation rather than production-ready 
performance claims. We assess classification performance, 
operational efficiency, and system behavior across diverse 
attack scenarios. 

A. Offline System Evaluation  

 The offline system is designed for retrospective forensic 
investigation, enabling security analysts to query historical 
network traffic patterns and identify threats through semantic 
similarity search.  

 1) Dataset and Evaluation Setup: The Offline RAG 
Forensic System embeds 40,000 network flow records from 
UNSW-NB15 into ChromaDB for comprehensive historical 
analysis. For performance evaluation, we tested the system on 
500 stratified query samples with balanced distribution (250 
attack instances, 250 normal flows). Protocol analysis showed 
TCP dominance, followed by UDP and ICMP traffic.  

 2) Traffic Behavior and Threat Categorization: Analysis 
revealed distinct behavioral signatures: attack flows exhibited 
longer durations, higher byte volumes, and varied TTL patterns 
suggesting IP spoofing. DNS, HTTP/HTTPS, and ICMP 
emerged as primary attack vectors. The LLM successfully 
categorized threats into Exploits, Reconnaissance, DoS, and 
Generic classes based on these behavioral patterns. 

 3) Classification Performance: Table II presents 
comprehensive offline evaluation metrics derived from 
confusion matrix analysis ensuring mathematical consistency. 
The system achieved 65.0% overall accuracy with 60.0% 
precision. Notably, recall reached 90.0%, demonstrating high 
sensitivity in attack detection, a critical requirement for 
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security systems where missing attacks carries severe 
consequences. The F1-score of 72.0% indicates balanced 
performance. The 15–19 seconds of query latency is acceptable 
in forensic and threat-hunting workflows, where analysts 
prioritize depth of analysis and contextual understanding over 
immediacy. The 60% false positive rate (150 false alarms from 
250 normal queries) represents a deliberate trade-off 
prioritizing attack detection sensitivity. In forensic 
investigations, analysts have time to manually review flagged 
incidents, making higher FPR acceptable compared to real-time 
systems. Security teams typically prefer over-alerting during 
retrospective analysis to avoid missing critical incidents. 

 

 

 

 

 

 

 

 

 

 

 

B. Real-Time System Evaluation  

The real-time system is designed for continuous network 

monitoring, providing immediate threat detection and alerting 

capabilities for active defense scenarios. The evaluation 

focuses on per-flow detection accuracy and latency rather than 

long-duration traffic replay, which is left for future large-scale 

deployment studies.  

1) Evaluation Methodology and Limitations: Important 

Caveat: The real-time system evaluation uses synthetically 

generated attack flows rather than live packet capture. This 

constitutes proof-of-concept validation of the detection 

pipeline logic, not production-ready evaluation.  

We generated 500 synthetic network flows with 

characteristic attack signatures. Each flow was 

programmatically constructed with features matching known 

attack patterns: port scans exhibit half-open connections with 

single SYN packets; SYN floods show high packet rates with 

multiple SYNs and no ACKs; UDP/ICMP floods display 

elevated packets-per-second ratios; Slowloris attacks feature 

long durations with minimal activity; and reconnaissance 

attempts show exploratory connection patterns. 

Circular Reasoning Acknowledgment: We explicitly 

acknowledge that testing on flows designed with 

“characteristic attack signatures” introduces a degree of 
circular reasoning, the system detects patterns it was 

specifically designed to detect. The high detection rates (97–

98%) for heuristic-classified attacks reflect this controlled 

validation scenario. Real-world traffic exhibits greater 

variability, noise, and adversarial evasion attempts that would 

likely reduce these metrics. 

      Generated flows were processed through the complete 

detection pipeline: heuristic pre-filtering followed by LLM 

analysis for ambiguous cases. While Scapy integration for live 

packet capture is implemented, this evaluation does not 

demonstrate live traffic performance. Production validation 

with actual UNSW-NB15 flows replayed through the network 

stack, or deployment on live enterprise traffic, remains 

essential future work. 

 

2) Operational Performance: The real-time system was 

benchmarked on Windows 10 with Intel Core i5-9300H (2.4 

GHz base, 4.1 GHz boost, 4 cores/8 threads), 16GB DDR4 

2666 RAM, and NVIDIA GTX 1650 GPU (4GB VRAM, 

CUDA-enabled). Key operational metrics include:  

• Capture and Aggregation: Sustained packet capture and 

flow aggregation without loss. 

• Heuristic Filtering: Near-instantaneous classification (for 

pattern-based attacks). 

• LLM Analysis: 2-3 seconds for ambiguous flows requiring 

semantic evaluation.  

• Dashboard Refresh: 1-second real-time updates.  

• Memory Usage: 200-300 MB stable consumption. 

 

The heuristic pre-filter handles most flows instantly, with 

LLM invoked selectively for ambiguous cases. Production 

deployment with high traffic volumes would require flow 
queuing or parallel LLM workers. 

 

3) Attack-Specific Detection Accuracy: Table III presents 

detection performance across six attack categories evaluated 

on 500 network flows. Port scanning and flooding attacks 

achieved near-perfect detection (97-98% recall) through 

pattern-based heuristics. Reconnaissance detection showed 

88% recall with 78% precision, reflecting the complexity of 

distinguishing exploratory traffic from normal browsing. The 

hybrid heuristic-LLM approach achieved 91% overall 

accuracy with 95% attack recall. The 25% false positive rate 

reflects a recall-oriented design, prioritizing attack sensitivity 

in security operations where missed attacks are more costly 

than additional alerts requiring analyst review. 
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C. Architectural Comparison  

Table IV contrasts the two systems, demonstrating 

complementary design goals for forensic investigation and 

active defense. Note that evaluation conditions differ: the 

offline system uses benchmark data while the real-time system 

uses synthetic flows (proof-of-concept). 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

D. Comparison with Traditional Methods  

Table V provides context by showing the traditional 

supervised machine learning classifiers trained on UNSW-

NB15. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Critical caveat: Direct numerical comparison between these 

paradigms is fundamentally inappropriate; they solve different 

tasks under different conditions. 

• Traditional ML: Supervised per-flow binary classification 

with labeled training data, optimized for accuracy on the same 

distribution.  
• Ours (Offline): Zero-shot query-driven forensic retrieval 

and reasoning, no training on UNSW-NB15, evaluated on 

analyst-style natural language queries.  

• Ours (Real-Time): Hybrid heuristic-LLM detection on 

synthetic flows, not the UNSW-NB15 test set.  

While supervised methods achieve higher classification 

accuracy (86–96%), they require labeled training data, offer 

limited interpretability, and cannot adapt to novel threats 

without retraining. In contrast, our approach deliberately 

trades raw classification performance for several key 

advantages: (1) zero-shot generalization, (2) human-readable 

explanations, (3) semantic reasoning over network behaviours, 

and (4) adaptability to previously unseen attack patterns. The 

term zero-shot should not be overstated, as large language 

models are pre-trained on corpora that likely include 

cybersecurity-related discussions, thereby providing implicit 

domain knowledge rather than true absence of prior exposure. 

V. LIMITATIONS AND DISCUSSION 

A. Evaluation Limitations 

This work presents proof-of-concept validation with 

explicit limitations: 

Synthetic Flow Testing: The real-time system is 

evaluated on synthetically generated attack flows with 
characteristic signatures. This validates detection pipeline 

logic but does not demonstrate performance on live network 

traffic or adversarially crafted evasion attempts. Future work 

must include: (a) replay of actual UNSW-NB15 flows through 

the network stack, (b) live traffic deployment, and (c) 

adversarial robustness testing. 

Offline Query Methodology: The 500 test queries were 

constructed to match forensic analyst workflows, but their 

generation methodology warrants transparency. Queries target 

known attack patterns in the indexed database, and the 

evaluation measures retrieval-augmented reasoning rather than 

traditional classification. No train/test contamination exists 
(queries are natural language, not flow records), but retrieved 

targets may overlap with indexed content. 

Heuristic Dominance: As quantified in Section III, 

heuristic rules handle the majority of attack detections (97-

98% recall for floods and scans). The LLM’s unique 

contribution is limited to reconnaissance detection (88% 

recall) and explanation generation. Claims of “LLM-based 

detection” should be understood as “hybrid heuristic–LLM 

detection.” 

B. Technical Limitations 

Dependence on cloud-based LLM APIs introduces 

recurring costs and 2–3 second latency per analysis, which 

may be prohibitive for high-throughput or ultra-low-latency 

environments. Heuristic pre-filtering reduces LLM 

invocations by approximately 70%, and local deployment 

options (e.g., Ollama) exist for cost-sensitive scenarios. 

LLM-based detection may be vulnerable to adversarial 
techniques, including crafted evasion patterns and prompt 

injection attacks. LLM-generated explanations, while 

enhancing interpretability, may occasionally produce plausible 

but inaccurate reasoning (hallucination), necessitating human 

oversight for critical decisions. 

 

C. Dataset and Generalization 

The UNSW-NB15 dataset dates to 2015 and does not 

capture modern threats such as Log4Shell exploits, supply 

chain attacks, encrypted malware command-and-control, or 

AI-generated attack patterns. Validation on contemporary 
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datasets (CIC-IDS2017, CSE-CIC-IDS2018, or proprietary 

enterprise traffic) is essential before production deployment. 

The current prototype uses ChromaDB with limited 

production scalability and a basic RAG pipeline lacking 

hybrid search, query rewriting, and re-ranking techniques. 

 

VI. CONCLUSION AND FUTURE WORK 

This work presents a proof-of-concept dual-system 

architecture leveraging Large Language Models for both 

offline forensic analysis and real-time intrusion detection. The 

primary contribution is architectural: addressing the gap in 
unified frameworks that combine retrospective forensic 

investigation with active threat monitoring. The offline RAG 

system grounds LLM responses in historical incident data, 

while the real-time hybrid system balances heuristic efficiency 

with LLM reasoning for ambiguous cases.  

Empirical results should be interpreted as feasibility 

validation: The offline system demonstrates 90% recall on 

forensic queries, and the real-time system achieves 91% 

accuracy, but these metrics reflect controlled proof-of-concept 

testing on benchmark data and synthetic flows, not production 

conditions. Critically, heuristic rules handle most real-time 

detections; the LLM’s unique contribution lies in 
reconnaissance detection and explanation generation.  

LLM-based approaches offer zero-shot adaptability, 

semantic understanding, and explainable outputs. However, 

organizations should combine heuristic filters with selective 

LLM analysis, maintain human oversight for critical decisions, 

and validate on their specific traffic patterns before 

deployment. 

 Essential future work includes: (1) live traffic validation 

with actual UNSW-NB15 flows replayed through the network 

stack; (2) evaluation on modern datasets (CIC-IDS2017, CSE-

CIC-IDS2018) capturing contemporary threats; (3) expert 
evaluation of explanation quality; (4) adversarial robustness 

testing against evasion techniques; and (5) cost analysis with 

actual API pricing. Technical improvements involve migrating 

to scalable vector databases (Qdrant, Milvus, Weaviate), 

implementing advanced RAG techniques (hybrid search, re-

ranking), and enterprise SIEM integration. Implementation 

code and evaluation scripts will be released to facilitate 

reproducibility. 
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