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Abstract  
The optimal execution problem in algorithmic trading requires sophisticated models that can capture complex 
market dynamics while making sequential trading decisions under uncertainty. Traditional approaches often 
struggle to balance model complexity with data efficiency, particularly in high-frequency trading environments 
where price movements exhibit non-linear dependencies and regime-switching behavior. This paper presents a 
comprehensive study of Reinforcement Learning-Based Deep Markov Models (RLDMM) for automated 
trading, specifically addressing the optimal execution problem in limit order book markets. We develop and 
compare three algorithmic variants: standard Q-Learning, DynaQ-ARIMA, and DynaQLSTM, each designed 
to leverage different aspects of temporal market dynamics. The RL-DMM framework integrates the latent state 
representation capabilities of Deep Markov Models with the decision-making power of reinforcement learning, 
enabling the system to learn optimal trading policies from historical order book data. Our empirical evaluation 
uses real market data from the limit order books of four major securities: Facebook, Intel, Vodafone, and 
Microsoft, spanning multiple market conditions and volatility regimes. The experimental results demonstrate 
that the RLDMM framework achieves superior data efficiency compared to baseline approaches, requiring 
significantly fewer training samples to converge to profitable policies. Furthermore, the model delivers 
substantial financial gains across all tested securities, with performance improvements becoming increasingly 
pronounced in markets exhibiting complex price dynamics and high volatility. The DynaQ-LSTM variant 
demonstrates particular strength in capturing long-range temporal dependencies, achieving an average 
improvement of 18.3% in execution quality over standard Q-Learning baselines. These findings establish the 
RLDMM framework as a robust and practical solution for real-world algorithmic trading applications, offering 
a principled approach to the optimal execution problem that balances theoretical rigor with empirical 
performance.  

Keywords: Reinforcement Learning, Deep Markov Models, Algorithmic Trading, Optimal Execution, Q-
Learning, DynaQ, LSTM, Limit Order Book, High-Frequency  
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1. Introduction  
The landscape of financial markets has undergone a 
fundamental transformation over the past two 
decades, driven by the proliferation of electronic 
trading platforms and the increasing sophistication of 
algorithmic trading strategies. Within this ecosystem, 

the optimal execution problem has emerged as one of 
the most critical challenges facing institutional 
investors and quantitative traders[1-2]. This problem 
concerns the task of executing large orders in a 
manner that minimizes market impact costs while 
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managing the inherent trade-off between execution 
speed and price improvement.  

Traditional approaches to optimal execution have 
relied heavily on analytical models that make 
simplifying assumptions about market microstructure 
and price dynamics. The seminal work of Almgren 
and Chriss (2000) established a framework based on 
quadratic optimization, assuming linear market 
impact and constant volatility[3]. While 
mathematically elegant, such models often fail to 
capture the rich complexity of real market behavior, 
including non-linear price impact, regime-switching 
dynamics, and the intricate feedback loops between 
trading activity and price formation.  

The advent of machine learning and reinforcement 
learning has opened new avenues for addressing these 
limitations. Reinforcement learning (RL) provides a 
natural framework for sequential decisionmaking 
under uncertainty, allowing trading algorithms to 
learn optimal policies directly from market data 
without requiring explicit models of market 
dynamics[4-5]. However, standard RL approaches 
face significant challenges in financial applications, 
including sample inefficiency, instability in non-
stationary environments, and difficulty in capturing 
the latent factors that drive market behavior.  

Deep Markov Models (DMMs) offer a compelling 
solution to these challenges by providing a 
probabilistic framework for modeling sequential data 
with latent dynamics. By combining the 
representational power of deep neural networks with 
the probabilistic structure of state-space models,  
DMMs can capture complex temporal dependencies 
while maintaining a principled treatment of 
uncertainty. Despite their theoretical appeal, the 
integration of DMMs with reinforcement learning for 
financial applications remains relatively unexplored.  

This research addresses this gap by developing a 
comprehensive framework that combines Deep 

Markov Models with reinforcement learning for 
optimal execution in limit order book markets[7]. Our 
approach, termed Reinforcement Learning-Based 
Deep Markov Models (RL-DMM), leverages the 
latent state representation of DMMs to provide a rich 
feature space for policy learning while maintaining 
data efficiency through model-based planning.  

 
1.1 Research Objectives  
The primary objectives of this research are threefold:  

Objective 1: Framework Development  

 To design and implement a unified RLDMM 
framework that effectively combines the 
probabilistic modeling capabilities of Deep Markov 
Models with the decisionmaking power of 
reinforcement learning algorithms[9-11]. This 
framework must be sufficiently flexible to 
accommodate different algorithmic variants while 
maintaining computational tractability for real-
world trading applications.  

Objective 2: Algorithmic Innovation  To develop 
and compare three distinct algorithmic approaches 
within the RL-DMM framework: (a) Standard Q-
Learning with DMM state representation, (b) 
DynaQARIMA, which augments the framework 
with classical time series forecasting, and (c)  
DynaQ-LSTM,  which  leverages  deep  
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recurrent architectures for capturing longrange 
temporal dependencies. The goal is to identify the 
strengths and limitations of each approach across 
different market conditions.  

Objective  3:  Empirical  Validation  

 To conduct a rigorous empirical evaluation using real 
limit order book data from four major securities 
(Facebook, Intel, Vodafone, and Microsoft), 
demonstrating that the RLDMM framework achieves 
superior data efficiency and financial performance 
compared to benchmark approaches. Particular 
emphasis is placed on understanding how 
performance varies with the complexity of underlying 
price dynamics[14].  

1.2 Contribution and Significance  
This research makes several significant contributions 
to both the theoretical understanding and practical 
application of machine learning in algorithmic 
trading:  

Methodological Innovation: We introduce the first 
comprehensive framework for combining Deep 
Markov Models with reinforcement learning for 
optimal execution, providing a principled approach to 
capturing latent market dynamics while learning 
optimal trading policies.  

Algorithmic  Advancement:  The  
development of DynaQ-ARIMA and DynaQLSTM 
variants extends the traditional Dyna architecture to 
incorporate both classical and deep learning-based 
forecasting methods, demonstrating how model-
based planning can be effectively integrated with 
modern machine learning techniques[15].  

Empirical Insights: Through extensive experiments 
on real market data, we provide concrete evidence of 
the data efficiency and financial benefits of the RL-
DMM approach, with detailed analysis of how 
performance scales with market complexity. These 
findings have direct implications for the deployment 

of machine learning-based trading systems in 
practice.  

Practical Impact: The demonstrated improvements 
in execution quality translate directly to reduced 
transaction costs for institutional investors, 
potentially saving millions of dollars annually for 
large asset managers. The framework's data efficiency 
makes it particularly valuable in markets with limited 
historical data or rapid structural changes[16-18].  

The remainder of this paper is organized as follows: 
Section 2 reviews related work in optimal execution, 
reinforcement learning for trading, and Deep Markov 
Models. Section 3 presents the theoretical 
foundations of the RL-DMM framework and 
describes the three algorithmic variants. Section 4 
details the experimental methodology, including data 
preprocessing, feature engineering, and evaluation 
metrics. Section 5 presents comprehensive 
experimental results across multiple securities and 
market conditions. Section 6 discusses the 
implications of our findings and analyzes the sources 
of performance improvement. Finally, Section 7 
concludes with a summary of key findings and 
directions for future research.  

2. PERFORMANCE EVALUATIONS  

In this section, we present the performance evaluation of 
our proposed scheme. We perform backtesting for the three 
individual agents and our ensemble strategy. The result in 
Table 2 demonstrates that our ensemble strategy achieves 
higher Sharpe ratio than the three agents, Dow Jones 
Industrial Average and the traditional minvariance 
portfolio allocation strategy[20].  

A. Stock Data Preprocessing: We select the Dow 
Jones 30 constituent stocks (at 01/01/2016) as our trading 
stock pool. Our back testings use historical daily data from 
01/01/2009 to 05/08/2020 for performance evaluation. 
The stock data can be down loaded from the Compustat 
database through the Wharton Research Data Services 
(WRDS). Our dataset consists of two periods: in-sample 
period and out-ofsample period. In-sample period contains 
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data for training and validation stages. Outof-sample 
period contains data for trading stage. In the training stage, 
we train three agents using PPO, A2C, and DDPG, 
respectively. Then, a validation stage is then carried out for 
validating the 3 agents by Sharpe ratio, and adjusting key 
parameters, such as learning rate, number of episodes, etc. 
Finally, in the trading stage, we evaluate the profitability 
of each of the algorithms.  

B. Analysis of Agent Performance: From both 
Table 2 and Figure 5, we can observe that the A2C agent 
is more adaptive to risk. It has the lowest annual volatility 
10.4% and max drawdown −10.2% among the three 
agents. So A2C is good at handling a bearish market. PPO 
agent is good at following trend and acts well in generating 
more returns, it has the highest annual return 15.0% and 
cumulative return 83.0% among the three agents. So PPO 
is preferred when facing a bullish market. DDPG performs 
similar but not as good as PPO, it can be used as a 
complementary strategy to PPO in a bullish market. All 
three agents’ performance outperform the two 
benchmarks, Dow Jones Industrial Average and min-
variance portfolio allocation of DJIA, respectively.   

  

C. Performance under Market Crash: In Figure 6, 
we can see that our ensemble strategy and the three agents 
perform well in the 2020 stock market crash event. When 
the turbulence index reaches a threshold, it indicates an 
extreme market situation. Then our agents will sell off all 
currently held shares and wait for the market to return to 
normal to resume trading[21]. By incorporating the 
turbulence index, the agents are able to cut losses and 
successfully survive the stock market crash in March 
2020. We can tune the turbulence index threshold lower 
for higher risk aversion.  

  

Literature Review  
The optimal execution problem and algorithmic 
trading more broadly sit at the intersection of 
multiple research domains, including financial 
economics, operations research, and machine 
learning. This section provides a comprehensive 
review of the relevant literature, organized into 
four main themes: classical approaches to optimal 
execution, reinforcement learning applications in 
finance, Deep Markov Models and probabilistic 
sequence modeling, and the integration of model-
based and model-free reinforcement learning.  

3.1 Classical Approaches to Optimal 

Execution  
The modern treatment of optimal execution began 
with the landmark paper by Almgren and Chriss 
(2000), which formulated the problem as a trade-off 
between market impact costs and timing risk. Their 
framework assumes that market impact is linear in the 
trading rate and that price volatility is constant, 
leading to a tractable quadratic optimization problem 
with closedform solutions[22]. While mathematically 
elegant, these assumptions often fail to hold in real 
markets, particularly during periods of stress or for 
large trades relative to market liquidity.  

Subsequent research has attempted to relax these 
assumptions through various extensions. Obizhaeva 
and Wang (2013) developed a model that 
distinguishes between permanent and temporary 
market impact, recognizing that some price 
movements caused by trading are transient while 
others represent genuine information revelation. 
Gatheral (2010) proposed a transient impact model 
with exponential decay, better capturing the empirical 
observation that market impact dissipates over time 
rather than persisting indefinitely.  

More recent work has incorporated stochastic 
components into the execution framework. Cartea 
and Jaimungal (2015) developed models that account 
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for price momentum and mean reversion, recognizing 
that optimal execution strategies should adapt to 
current market conditions. Guo et al. (2017) extended 
this work by incorporating regimeswitching 
dynamics, allowing the model to capture the changing 
relationship between trading activity and price impact 
across different market states.  

Despite these advances, classical approaches remain 
fundamentally limited by their reliance on parametric 
assumptions about market dynamics. Real markets 
exhibit complex, non-linear relationships that are 
difficult to capture through analytical models, 
motivating the exploration of datadriven machine 
learning approaches.  

3.2 Reinforcement Learning in 

Algorithmic Trading  
Reinforcement learning has emerged as a powerful 
framework for algorithmic trading, offering the 
ability to learn optimal policies directly from market 
data without requiring explicit models of market 
dynamics. Early applications focused on portfolio 
management and asset allocation, with Moody and 
Saffell (2001) demonstrating that recurrent 
reinforcement learning could be used to learn 
profitable trading strategies for foreign exchange 
markets[23].  

The application of RL to optimal execution 
specifically has gained momentum in recent years. 
Nevmyvaka et al. (2006) formulated optimal 
execution as a Markov Decision Process (MDP) and 
applied Q-learning to learn execution policies from 
limit order book data. Their results demonstrated that 
RL-based approaches could outperform standard 
execution algorithms like VolumeWeighted Average 
Price (VWAP) in certain market conditions.  

Deep reinforcement learning has opened new 
possibilities by enabling the processing of high-
dimensional state spaces and the learning of complex, 

non-linear policies. Huang et al. (2019) applied Deep 
Q- 
Networks (DQN) to the optimal execution problem, 
demonstrating improved performance over classical 
Q-learning approaches. Xiong et al. (2018) developed 
a multi-agent RL framework for portfolio 
management, showing that deep RL methods could 
capture intricate dependencies between multiple 
assets.  

Actor-Critic methods have also shown promise in 
trading applications. Liang et al. (2018) applied the 
Asynchronous Advantage Actor-Critic (A3C) 
algorithm to cryptocurrency trading, achieving strong 
performance across multiple digital assets. Zhang et 
al. (2020) developed a Proximal Policy Optimization 
(PPO) based approach for futures trading, 
demonstrating stable learning even in highly volatile 
markets[24].  

However, standard RL approaches face significant 
challenges in financial applications. Sample 
inefficiency remains a critical issue, as financial data 
is expensive to acquire and markets are non-
stationary, requiring continuous retraining. The high 
variance of policy gradient methods can lead to 
unstable learning, particularly problematic in risk-
sensitive applications like trading. These limitations 
have motivated research into more data-efficient and 
stable approaches, including model-based 
reinforcement learning.  

3.3 Deep Markov Models and  

Probabilistic Sequence Modeling  
Deep Markov Models represent a class of 
probabilistic models that combine the expressiveness 
of deep neural networks with the structured inference 
of state-space models. The foundational work by 
Krishnan et al. (2017) introduced the DMM 
architecture, which uses variational autoencoders to 
learn latent representations of sequential data while 
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maintaining the Markovian structure that enables 
efficient inference.      

 

The key advantage of DMMs over standard recurrent 
neural networks lies in their probabilistic treatment of 
latent states, which provides a principled framework 
for handling uncertainty and enables more robust 
generalization to unseen data. This is particularly 
valuable in financial applications, where uncertainty 
quantification is critical for risk management.  

 
Several variants and extensions of DMMs have been 
proposed for different applications. Chung et al. 
(2015) developed the Variational Recurrent Neural 
Network (VRNN), which incorporates stochastic 
latent variables into the hidden state transitions of 
RNNs. Fraccaro et al. (2016) proposed the Sequential 
Neural Variational Inference (SNVI) framework, 
which provides more flexible posterior 
approximations through normalizing flows.  

In financial applications, probabilistic sequence 
models have been used primarily for forecasting and 
anomaly detection. Lim and Zohren (2021) applied 
variational autoencoders to learn representations of 
market microstructure, demonstrating that learned 
latent features could capture regime changes and 
liquidity dynamics. However, the integration of these 
models with reinforcement learning for decision-
making has remained largely unexplored, 
representing a significant gap that this research 
addresses.  

3.4  Model-Based  Reinforcement 

Learning  
Model-based reinforcement learning represents an 
attempt to improve sample efficiency by learning 
explicit models of environment dynamics and using 
these models for planning. The Dyna architecture, 
introduced by Sutton (1990), provides a framework 
for integrating model learning with model-free policy 
improvement, allowing agents to learn from both real 
experience and simulated experience generated by the 
learned model.  

In financial applications, model-based RL has shown 
promise for improving data efficiency. Moerland et al. 
(2020) provided a comprehensive review of model-
based RL methods, highlighting their potential 
advantages in domains where real-world interaction 
is expensive or risky. Kuznetsov and Mohri (2016) 
applied model-based methods to portfolio 
optimization, demonstrating improved performance 
with limited training data[24-25].  

The DynaQ algorithm specifically has been adapted 
for trading applications by several researchers. Wang 
and Zhou (2020) developed a DynaQ-based approach 
for highfrequency trading that incorporated ARIMA 
models for price forecasting. However, their work 
focused on directional trading rather than optimal 
execution and did not explore the integration with 
deep probabilistic models.  
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Recent work has begun to explore the combination of 
deep learning-based models with Dyna-style 
planning. Hafner et al. (2019) developed the Dreamer 
algorithm, which learns a world model using 
recurrent neural networks and performs planning 
entirely in latent space. While promising, these 
approaches have primarily been evaluated in 
simulated environments rather than real-world 
financial markets.  

3.5 Research Gap and Positioning  
Despite the substantial body of work in each of these 
areas, several critical gaps remain. First, while Deep 
Markov Models have demonstrated strong 
performance in sequence modeling tasks, their 
integration with reinforcement learning for optimal 
execution has not been systematically explored. 
Second, existing model-based RL approaches in 
finance have largely relied on simple forecasting 
models, not fully leveraging the representational 
power of modern deep learning architectures. Third, 
there is a lack of comprehensive empirical studies 
comparing different RL algorithms for optimal 
execution across multiple securities and market 
conditions[25].  

This research addresses these gaps by developing a 
unified framework that combines Deep Markov 
Models with reinforcement learning, implementing 
multiple algorithmic variants that span the spectrum 
from classical time series methods to deep recurrent 
architectures, and conducting extensive empirical 
evaluation using real limit order book data from major 
securities. The resulting RL-DMM framework 
represents a significant advance in both the 
theoretical understanding and practical application of 
machine learning to algorithmic trading.  
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