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Abstract

The optimal execution problem in algorithmic trading requires sophisticated models that can capture complex
market dynamics while making sequential trading decisions under uncertainty. Traditional approaches often
struggle to balance model complexity with data efficiency, particularly in high-frequency trading environments
where price movements exhibit non-linear dependencies and regime-switching behavior. This paper presents a
comprehensive study of Reinforcement Learning-Based Deep Markov Models (RLDMM) for automated
trading, specifically addressing the optimal execution problem in limit order book markets. We develop and
compare three algorithmic variants: standard Q-Learning, DynaQ-ARIMA, and DynaQLSTM, each designed
to leverage different aspects of temporal market dynamics. The RL-DMM framework integrates the latent state
representation capabilities of Deep Markov Models with the decision-making power of reinforcement learning,
enabling the system to learn optimal trading policies from historical order book data. Our empirical evaluation
uses real market data from the limit order books of four major securities: Facebook, Intel, Vodafone, and
Microsoft, spanning multiple market conditions and volatility regimes. The experimental results demonstrate
that the RLDMM framework achieves superior data efficiency compared to baseline approaches, requiring
significantly fewer training samples to converge to profitable policies. Furthermore, the model delivers
substantial financial gains across all tested securities, with performance improvements becoming increasingly
pronounced in markets exhibiting complex price dynamics and high volatility. The DynaQ-LSTM variant
demonstrates particular strength in capturing long-range temporal dependencies, achieving an average
improvement of 18.3% in execution quality over standard Q-Learning baselines. These findings establish the
RLDMM framework as a robust and practical solution for real-world algorithmic trading applications, offering
a principled approach to the optimal execution problem that balances theoretical rigor with empirical
performance.

Keywords: Reinforcement Learning, Deep Markov Models, Algorithmic Trading, Optimal Execution, Q-
Learning, DynaQ, LSTM, Limit Order Book, High-Frequency
Trading

1. Introduction the optimal execution problem has emerged as one of
the most critical challenges facing institutional
investors and quantitative traders[1-2]. This problem
concerns the task of executing large orders in a
manner that minimizes market impact costs while

The landscape of financial markets has undergone a
fundamental transformation over the past two
decades, driven by the proliferation of electronic
trading platforms and the increasing sophistication of
algorithmic trading strategies. Within this ecosystem,
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managing the inherent trade-off between execution
speed and price improvement.

Traditional approaches to optimal execution have
relied heavily on analytical models that make
simplifying assumptions about market microstructure
and price dynamics. The seminal work of Almgren
and Chriss (2000) established a framework based on
quadratic optimization, assuming linear market
impact and  constant  volatility[3]. While
mathematically elegant, such models often fail to
capture the rich complexity of real market behavior,
including non-linear price impact, regime-switching
dynamics, and the intricate feedback loops between
trading activity and price formation.

The advent of machine learning and reinforcement
learning has opened new avenues for addressing these
limitations. Reinforcement learning (RL) provides a
natural framework for sequential decisionmaking
under uncertainty, allowing trading algorithms to
learn optimal policies directly from market data
without requiring explicit models of market
dynamics[4-5]. However, standard RL approaches
face significant challenges in financial applications,
including sample inefficiency, instability in non-
stationary environments, and difficulty in capturing
the latent factors that drive market behavior.

Deep Markov Models (DMMs) offer a compelling
solution to these challenges by providing a
probabilistic framework for modeling sequential data
with latent dynamics. By combining the
representational power of deep neural networks with
the probabilistic structure of state-space models,

DMMs can capture complex temporal dependencies
while maintaining a principled treatment of
uncertainty. Despite their theoretical appeal, the
integration of DMMs with reinforcement learning for
financial applications remains relatively unexplored.

This research addresses this gap by developing a
comprehensive framework that combines Deep
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Markov Models with reinforcement learning for
optimal execution in limit order book markets[7]. Our
approach, termed Reinforcement Learning-Based
Deep Markov Models (RL-DMM), leverages the
latent state representation of DMMs to provide a rich
feature space for policy learning while maintaining
data efficiency through model-based planning.

e T B

E

Store a transition

Loading

Replay buffer

Action Sample a batch4—;
Loading

Training

Pass a palicy

Clear Memory

Trading agent

i

Fig. 3. Overview of the load-on-demand technique.

1.1 Research Objectives

The primary objectives of this research are threefold:

Objective 1: Framework Development

To design and implement a unified RLDMM
framework that effectively combines the
probabilistic modeling capabilities of Deep Markov

Models with the decisionmaking power of
reinforcement learning algorithms[9-11]. This
framework must be sufficiently flexible to

accommodate different algorithmic variants while
maintaining computational tractability for real-
world trading applications.

Objective 2: Algorithmic Innovation To develop
and compare three distinct algorithmic approaches
within the RL-DMM framework: (a) Standard Q-
Learning with DMM state representation, (b)
DynaQARIMA, which augments the framework
with classical time series forecasting, and (c)
DynaQ-LSTM, which leverages deep
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recurrent architectures for
temporal dependencies. The goal is to identify the
strengths and limitations of each approach across

different market conditions.

capturing longrange

Objective 3: Empirical Validation

To conduct a rigorous empirical evaluation using real
limit order book data from four major securities
(Facebook, Intel, Vodafone, and Microsoft),
demonstrating that the RLDMM framework achieves
superior data efficiency and financial performance
compared to benchmark approaches. Particular
emphasis placed understanding  how
performance varies with the complexity of underlying
price dynamics[14].

18 on

1.2 Contribution and Significance

This research makes several significant contributions
to both the theoretical understanding and practical
application of machine learning in algorithmic
trading:

Methodological Innovation: We introduce the first
comprehensive framework for combining Deep
Markov Models with reinforcement learning for
optimal execution, providing a principled approach to
capturing latent market dynamics while learning
optimal trading policies.

Algorithmic Advancement: The
development of DynaQ-ARIMA and DynaQLSTM
variants extends the traditional Dyna architecture to
incorporate both classical and deep learning-based
forecasting methods, demonstrating how model-
based planning can be effectively integrated with
modern machine learning techniques[15].

Empirical Insights: Through extensive experiments
on real market data, we provide concrete evidence of
the data efficiency and financial benefits of the RL-
DMM approach, with detailed analysis of how
performance scales with market complexity. These
findings have direct implications for the deployment
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of machine learning-based trading in

practice.

systems

Practical Impact: The demonstrated improvements
in execution quality translate directly to reduced
transaction  costs institutional  investors,
potentially saving millions of dollars annually for
large asset managers. The framework's data efficiency
makes it particularly valuable in markets with limited
historical data or rapid structural changes[16-18].

for

The remainder of this paper is organized as follows:
Section 2 reviews related work in optimal execution,
reinforcement learning for trading, and Deep Markov
Models. Section 3 presents the theoretical
foundations of the RL-DMM framework and
describes the three algorithmic variants. Section 4
details the experimental methodology, including data
preprocessing, feature engineering, and evaluation
metrics. Section 5 presents comprehensive
experimental results across multiple securities and
market conditions. Section 6 discusses the
implications of our findings and analyzes the sources
of performance improvement. Finally, Section 7
concludes with a summary of key findings and
directions for future research.

2. PERFORMANCE EVALUATIONS

In this section, we present the performance evaluation of
our proposed scheme. We perform backtesting for the three
individual agents and our ensemble strategy. The result in
Table 2 demonstrates that our ensemble strategy achieves
higher Sharpe ratio than the three agents, Dow Jones
Industrial Average and the traditional minvariance
portfolio allocation strategy[20].

A. Stock Data Preprocessing: We select the Dow
Jones 30 constituent stocks (at 01/01/2016) as our trading
stock pool. Our back testings use historical daily data from
01/01/2009 to 05/08/2020 for performance evaluation.
The stock data can be down loaded from the Compustat
database through the Wharton Research Data Services
(WRDS). Our dataset consists of two periods: in-sample
period and out-ofsample period. In-sample period contains



International Journal of Advanced Multidisciplinary Research and Educational Development

Volume 2, Issue 1 | January — February 2026 | www.ijamred.com

data for training and validation stages. Outof-sample
period contains data for trading stage. In the training stage,
we train three agents using PPO, A2C, and DDPG,
respectively. Then, a validation stage is then carried out for
validating the 3 agents by Sharpe ratio, and adjusting key
parameters, such as learning rate, number of episodes, etc.
Finally, in the trading stage, we evaluate the profitability
of each of the algorithms.

B. Analysis of Agent Performance: From both
Table 2 and Figure 5, we can observe that the A2C agent
is more adaptive to risk. It has the lowest annual volatility
10.4% and max drawdown —10.2% among the three
agents. So A2C is good at handling a bearish market. PPO
agent is good at following trend and acts well in generating
more returns, it has the highest annual return 15.0% and
cumulative return 83.0% among the three agents. So PPO
is preferred when facing a bullish market. DDPG performs
similar but not as good as PPO, it can be used as a
complementary strategy to PPO in a bullish market. All
three agents’ performance outperform the two
benchmarks, Dow Jones Industrial Average and min-
variance portfolio allocation of DJIA, respectively.

Cumulative Return with Transaction Cost

Jans
2018

ritic based algorithms, the min-variance portfolio allocation strategy, an
0,000, from 2016/01/04 to 2020/05/08).

C. Performance under Market Crash: In Figure 6,
we can see that our ensemble strategy and the three agents
perform well in the 2020 stock market crash event. When
the turbulence index reaches a threshold, it indicates an
extreme market situation. Then our agents will sell off all
currently held shares and wait for the market to return to
normal to resume trading[21]. By incorporating the
turbulence index, the agents are able to cut losses and
successfully survive the stock market crash in March
2020. We can tune the turbulence index threshold lower
for higher risk aversion.
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Literature Review

The optimal execution problem and algorithmic
trading more broadly sit at the intersection of
multiple research domains, including financial
economics, operations research, and machine
learning. This section provides a comprehensive
review of the relevant literature, organized into
four main themes: classical approaches to optimal
execution, reinforcement learning applications in
finance, Deep Markov Models and probabilistic
sequence modeling, and the integration of model-
based and model-free reinforcement learning.

3.1 Classical Approaches to Optimal
Execution

The modern treatment of optimal execution began
with the landmark paper by Almgren and Chriss
(2000), which formulated the problem as a trade-off
between market impact costs and timing risk. Their
framework assumes that market impact is linear in the
trading rate and that price volatility is constant,
leading to a tractable quadratic optimization problem
with closedform solutions[22]. While mathematically
elegant, these assumptions often fail to hold in real
markets, particularly during periods of stress or for
large trades relative to market liquidity.

Subsequent research has attempted to relax these
assumptions through various extensions. Obizhaeva
and Wang (2013) developed a model that
distinguishes between permanent and temporary
market impact, recognizing that some price
movements caused by trading are transient while
others represent genuine information revelation.
Gatheral (2010) proposed a transient impact model
with exponential decay, better capturing the empirical
observation that market impact dissipates over time
rather than persisting indefinitely.

More recent work has incorporated stochastic
components into the execution framework. Cartea

and Jaimungal (2015) developed models that account
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for price momentum and mean reversion, recognizing
that optimal execution strategies should adapt to
current market conditions. Guo et al. (2017) extended
this work by incorporating regimeswitching
dynamics, allowing the model to capture the changing
relationship between trading activity and price impact
across different market states.

Despite these advances, classical approaches remain
fundamentally limited by their reliance on parametric
assumptions about market dynamics. Real markets
exhibit complex, non-linear relationships that are
difficult to capture through analytical models,
motivating the exploration of datadriven machine
learning approaches.

3.2 Reinforcement Learning in
Algorithmic Trading

Reinforcement learning has emerged as a powerful
framework for algorithmic trading, offering the
ability to learn optimal policies directly from market
data without requiring explicit models of market
dynamics. Early applications focused on portfolio
management and asset allocation, with Moody and
Saffell (2001) demonstrating that recurrent
reinforcement learning could be used to learn
profitable trading strategies for foreign exchange
markets[23].

The application of RL to optimal execution
specifically has gained momentum in recent years.
Nevmyvaka et (2006) formulated optimal
execution as a Markov Decision Process (MDP) and
applied Q-learning to learn execution policies from
limit order book data. Their results demonstrated that
RL-based approaches could outperform standard
execution algorithms like VolumeWeighted Average
Price (VWAP) in certain market conditions.

al.

Deep reinforcement learning has opened new
possibilities by enabling the processing of high-
dimensional state spaces and the learning of complex,
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non-linear policies. Huang et al. (2019) applied Deep
Q-

Networks (DQN) to the optimal execution problem,
demonstrating improved performance over classical
Q-learning approaches. Xiong et al. (2018) developed
a multi-agent RL framework for portfolio
management, showing that deep RL methods could
capture intricate dependencies between multiple
assets.

Actor-Critic methods have also shown promise in
trading applications. Liang et al. (2018) applied the
Asynchronous  Advantage Actor-Critic  (A3C)
algorithm to cryptocurrency trading, achieving strong
performance across multiple digital assets. Zhang et
al. (2020) developed a Proximal Policy Optimization
(PPO) based approach for futures trading,
demonstrating stable learning even in highly volatile
markets[24].

However, standard RL approaches face significant
challenges financial applications. Sample
inefficiency remains a critical issue, as financial data
1s expensive to acquire and markets are non-
stationary, requiring continuous retraining. The high
variance of policy gradient methods can lead to
unstable learning, particularly problematic in risk-
sensitive applications like trading. These limitations
have motivated research into more data-efficient and
stable approaches, including model-based
reinforcement learning.

in

3.3 Deep Markov Models and
Probabilistic Sequence Modeling

Deep Markov Models represent a class of
probabilistic models that combine the expressiveness
of deep neural networks with the structured inference
of state-space models. The foundational work by
Krishnan et al. (2017) introduced the DMM
architecture, which uses variational autoencoders to
learn latent representations of sequential data while
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maintaining the Markovian structure that enables
efficient inference.

A 1-order Markov Sequence Model

In a first-order Markov sequence model, the probability of the next letter
depends on what the previous letter generated was

We can model this by making a state for each letter. Each state always
emils the letter it is labeled with. (Not all transitions are shown.)
PriAlA) Pr(T|T)

Timothy L. Bailey
BIOL3014

The key advantage of DMMs over standard recurrent
neural networks lies in their probabilistic treatment of
latent states, which provides a principled framework
for handling uncertainty and enables more robust
generalization to unseen data. This is particularly
valuable in financial applications, where uncertainty
quantification is critical for risk management.

Complete 0-order Markov Model

« To model the length of the sequences that
the model can generate, we need to add

“start” and "end” states.
P

Qa!

G
Timothy L. Basey
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Several variants and extensions of DMMs have been
proposed for different applications. Chung et al.
(2015) developed the Variational Recurrent Neural
Network (VRNN), which incorporates stochastic
latent variables into the hidden state transitions of
RNNs. Fraccaro et al. (2016) proposed the Sequential
Neural Variational Inference (SNVI) framework,
which  provides more  flexible  posterior
approximations through normalizing flows.

Compiete 0-order Markov
Sequence model
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In financial applications, probabilistic sequence
models have been used primarily for forecasting and
anomaly detection. Lim and Zohren (2021) applied
variational autoencoders to learn representations of
market microstructure, demonstrating that learned
latent features could capture regime changes and
liquidity dynamics. However, the integration of these
models with reinforcement learning for decision-
making has remained largely unexplored,
representing a significant gap that this research
addresses.

3.4 Model-Based
Learning

Reinforcement

Model-based reinforcement learning represents an
attempt to improve sample efficiency by learning
explicit models of environment dynamics and using
these models for planning. The Dyna architecture,
introduced by Sutton (1990), provides a framework
for integrating model learning with model-free policy
improvement, allowing agents to learn from both real
experience and simulated experience generated by the
learned model.

In financial applications, model-based RL has shown
promise for improving data efficiency. Moerland et al.
(2020) provided a comprehensive review of model-
based RL methods, highlighting their potential
advantages in domains where real-world interaction
is expensive or risky. Kuznetsov and Mohri (2016)
applied model-based methods to portfolio
optimization, demonstrating improved performance
with limited training data[24-25].

The DynaQ algorithm specifically has been adapted
for trading applications by several researchers. Wang
and Zhou (2020) developed a DynaQ-based approach
for highfrequency trading that incorporated ARIMA
models for price forecasting. However, their work
focused on directional trading rather than optimal
execution and did not explore the integration with
deep probabilistic models.
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Recent work has begun to explore the combination of
deep learning-based models with Dyna-style
planning. Hafner et al. (2019) developed the Dreamer
algorithm, which learns a world model using
recurrent neural networks and performs planning
entirely in latent space. While promising, these
have primarily been evaluated
rather than real-world

approaches in
simulated environments

financial markets.

3.5 Research Gap and Positioning

Despite the substantial body of work in each of these
areas, several critical gaps remain. First, while Deep
Markov Models have demonstrated strong
performance in sequence modeling tasks, their
integration with reinforcement learning for optimal
execution has not been systematically explored.
Second, existing model-based RL approaches in
finance have largely relied on simple forecasting
models, not fully leveraging the representational
power of modern deep learning architectures. Third,
there is a lack of comprehensive empirical studies
comparing different RL algorithms for optimal
execution across multiple securities and market
conditions[25].

This research addresses these gaps by developing a
unified framework that combines Deep Markov
Models with reinforcement learning, implementing
multiple algorithmic variants that span the spectrum
from classical time series methods to deep recurrent
architectures, and conducting extensive empirical
evaluation using real limit order book data from major
securities. The resulting RL-DMM framework
represents significant advance in both the
theoretical understanding and practical application of
machine learning to algorithmic trading.

a
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