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Abstract— The detection, segmentation, and classification
of brain anomalies—ranging from malignant gliomas and
metastatic tumors to ischemic strokes and demyelinating
lesions—constitutes a foundational challenge in modern
neuroradiology. While Magnetic Resonance Imaging
(MRI) provides unparalleled soft-tissue contrast and
volumetric insight, the manual interpretation of these
complex, high-dimensional data streams is labor-intensive,
subject to inter-observer variability, and increasingly
unsustainable against the backdrop of rising global disease
burden. This research report presents an exhaustive
synthesis of the current state-of-the-art in machine
learning (ML) paradigms applied to brain anomaly
detection. We systematically evaluate the trajectory from
supervised Convolutional Neural Networks (CNNs), which
revolutionized semantic segmentation but remain
constrained by the scarcity of voxel-level annotations, to
the nascent domain of Unsupervised Anomaly Detection
(UAD) leveraging Generative Al. Detailed methodological
analyses are provided for emerging architectures,
including Vision Transformers (ViTs) that capture long-
range semantic dependencies, and Denoising Diffusion
Probabilistic Models (DDPMs) that learn normative
distributions of healthy anatomy to identify outliers. We
critically assess benchmark performance across standard
datasets such as BraTS2021, ATLAS, and the newly
introduced NOVA and BMAD suites, highlighting the
trade-offs between computational efficiency—where
feature-adaptation networks like SimpleNet excel—and
anatomical fidelity, where guided diffusion models like
THOR dominate. Furthermore, we explore the
implementation of hybrid systems like Swin-UNETR and
Masked Bernoulli Diffusion, which attempt to reconcile
the conflicting demands of 3D volumetric reasoning and
GPU memory constraints. The report concludes that while
supervised methods remain the gold standard for specific,
well-characterized pathologies, the future of general-
purpose neuro-diagnostics lies in self-supervised,
foundation-model-driven approaches capable of
generalizing to open-set clinical environments.

Keywords—Paradigms, Anamoly, self-supervised,neuro-diagnostics

Computational efficiency , volumetric reasoning.

1. Introduction

1.1 The Global Burden of Central Nervous System
Pathologies

The imperative for automated brain anomaly detection is
driven by a profound and escalating global health crisis.
Central Nervous System (CNS) pathologies represent a
significant source of mortality and morbidity worldwide.
According to 2024 global cancer statistics, the incidence of
brain and CNS cancers reached approximately 321,731 cases,
resulting in 248,500 deaths, ranking 12th in global cancer
mortality.! While these tumors constitute less than 2% of all
cancer cases, their impact is disproportionately severe due to
their high mortality rates and the critical neurological deficits
they induce.?

The burden is particularly acute regarding malignant primary
brain tumors. Glioblastoma (GBM), the most aggressive and
common primary malignancy in adults, accounts for
approximately 45% of all primary malignant brain tumors and
16% of all primary brain tumors.> Despite aggressive
therapeutic = regimens  involving  surgical  resection,
radiotherapy, and chemotherapy (e.g., temozolomide), the
prognosis remains grim, with a five-year survival rate
hovering between 5% and 10%.> The situation is equally
critical in pediatric populations, where brain tumors are the
leading cause of cancer-related death, with approximately
5,230 new cases expected in the United States alone in 2023.3
Beyond oncology, the spectrum of brain anomalies includes
prevalent conditions such as ischemic stroke, Multiple
Sclerosis (MS), and Traumatic Brain Injury (TBI). The
detection of White Matter Hyperintensities (WMH), often
precursors to stroke or indicators of vascular dementia,
requires the identification of subtle textural changes that can
easily be overlooked in early stages. The prevalence of CNS
cancers and associated anomalies is projected to rise by 31.6%
among adults aged 20-64 by 2050, driven by aging
populations and improved diagnostic access.? This trajectory
places an unsustainable load on the limited workforce of
specialized neuroradiologists, necessitating the integration of
Computer-Aided Diagnosis (CAD) systems to alleviate the
"diagnostic bottleneck".?
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1.2 The Diagnostic Bottleneck and Clinical Workflow

In current clinical practice, the diagnosis of brain anomalies
relies heavily on the qualitative interpretation of MRI scans.
Radiologists must mentally integrate information from
multiple 2D sequences to form a 3D understanding of the
pathology. This process is inherently subjective and prone to
fatigue-induced errors. Studies indicate that manual analysis is
time-consuming and susceptible to significant inter-observer
variability, particularly when delineating the boundaries of
diffuse tumors like low-grade gliomas or quantifying the
volume of MS lesions.®

The complexity of the data further complicates this task. MRI
is a multi-modal imaging technique, where different pulse
sequences reveal distinct biological properties:

o TI1-weighted (T1w): Provides excellent anatomical
detail and gray-white matter differentiation.

e T2-weighted (T2w): Sensitive to water content,
making it wuseful for detecting edema and
inflammation.

e  Fluid-Attenuated Inversion Recovery (FLAIR):
Suppresses the signal from cerebrospinal fluid (CSF),
enhancing the visibility of periventricular lesions and
edema.’

e Tl1-weighted (T1Ce):
Highlights the active tumor core where the blood-

Contrast-Enhanced

brain barrier has been compromised.

A radiologist must synthesize these modalities to distinguish
between the enhancing tumor core, the non-enhancing
peritumoral edema, and healthy necrotic tissue. The sheer
volume of data generated by modern high-resolution scanners,
often exceeding hundreds of slices per patient, makes manual
voxel-level segmentation impractical for routine care.’ This
has created a clear mandate for Machine Learning (ML)
solutions that can automate detection, segmentation, and
classification with high sensitivity and specificity.

1.3 The Machine Learning Imperative

The integration of ML and Deep Learning (DL) into
neuroimaging represents a fundamental shift from descriptive
to predictive radiology. The objective is not merely to
replicate human performance but to augment it by detecting
patterns invisible to the human eye (radiomics) and providing
quantitative metrics for longitudinal monitoring.®

Early CAD systems relied on traditional machine learning
algorithms such as Support Vector Machines (SVMs),
Random Forests (RF), and Artificial Neural Networks
(ANNSs).? These approaches depended heavily on "handcrafted
features"—manually designed mathematical descriptors of
texture, shape, and intensity (e.g., Gray Level Co-occurrence
Matrices). While effective for simple classification tasks, they
lacked the capacity to model complex, varying anatomical

structures and required extensive domain expertise for feature
engineering.!?

The advent of Deep Learning, specifically Convolutional
Neural Networks (CNNs), removed the need for manual
feature extraction. By learning hierarchical representations
directly from the raw pixel data, DL models achieved state-of-
the-art performance in semantic segmentation, exemplified by
the success of the U-Net architecture in the Multimodal Brain
Tumor Segmentation (BraTS) challenges.!! However, as we
will explore in this report, the reliance on large, annotated
datasets has spurred a secondary revolution toward
Unsupervised Anomaly Detection (UAD) and Generative Al
aiming to solve the "data scarcity" and "open-set" problems
that plague supervised learning.'

2. Literature Survey: The Evolution of Architectures

The field of brain anomaly detection has traversed three
distinct eras: the age of Supervised CNNs, the emergence of
Vision Transformers, and the current frontier of Unsupervised
Generative Models.

2.1 The Era of Supervised Convolutional Neural Networks
(CNNs)

For the past decade, CNNs have been the dominant paradigm
in medical image analysis. The core mechanism of a CNN
involves convolving learnable filters over the input image to
extract local features (edges, textures) which are then
aggregated into high-level semantic representations.

The U-Net Standard:

The U-Net architecture, introduced by Ronneberger et al.,
remains the cornerstone of biomedical segmentation. Its
symmetric encoder-decoder structure, linked by skip
connections, allows the network to combine deep semantic
information (from the encoder) with high-resolution spatial
details (from the decoder).12 Variants of U-Net, such as the
3D U-Net and V-Net, were developed to handle volumetric
MRI data directly, addressing the loss of z-axis context
inherent in 2D slice-processing models.15

Recent systematic reviews from 2024 and 2025 emphasize
that supervised CNN pipelines often combine segmentation
with classification. For instance, models employing VGG-19
or ResNet-50 backbones have achieved classification
accuracies exceeding 97% for differentiating between glioma
grades or tumor types (meningioma vs. pituitary vs. glioma).®
A study utilizing a pipeline of VGG combined with U-Net
segmentation reported an accuracy of 97.44%, demonstrating
the efficacy of cascading detection and segmentation tasks. '°
Limitations of Pure CNNs:

Despite their success, CNNs suffer from a "locality bias." The
receptive field of a convolutional operation is limited to the
kernel size (typically 3x3), meaning the network struggles to
model long-range dependencies across a large brain volume
unless the network is extremely deep.18 This limitation is
critical in neuroimaging, where the spatial relationship
between distant structures (e.g., bilateral symmetry of the
ventricles) is a key indicator of anomaly.19
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2.2 The Rise of Vision Transformers (ViTs)

To address the limitations of CNNs, the field has increasingly
adopted Vision Transformers (ViTs). Originally designed for
Natural Language Processing (NLP), Transformers utilize a
self-attention mechanism that allows every element in a
sequence to "attend" to every other element, regardless of
distance. In vision, images are divided into patches (tokens),
enabling the model to capture global semantic context.?
Swin Transformers:
The Swin (Shifted Window) Transformer has emerged as a
preferred architecture for medical imaging. Standard ViTs
suffer from quadratic computational complexity with respect
to image size. Swin Transformers mitigate this by computing
self-attention within local windows that shift between layers,
creating a  hierarchical representation with  linear
complexity.18 This architecture is particularly well-suited for
high-resolution MRI analysis.

e Performance: Recent

studies employing Swin

Transformers for brain tumor -classification have
reported accuracies of up to 99.0% on single datasets,
outperforming classic ViT-b32 and ResNet models.??

e Hybrid Models: Recognizing that CNNs are
superior at capturing low-level morphological details
while Transformers excel at global context, hybrid
architectures like Swin-UNETR, TransBTS, and
TransUNet have been developed. These models use
a Transformer encoder to extract global features and

a CNN decoder to refine segmentation boundaries. '

Advanced Transformer Variants (2024-2025):
e RanMerFormer: Proposed in 2024, this model uses
a randomized token merging algorithm to reduce the
computational redundancy of ViTs, addressing the

high memory cost of processing 3D volumes. '3

e LCDEIT (Linear
Image Transformer):

Complexity Data-Efficient
Introduced to tackle the
inductive bias and parameter dependency of standard

ViTs, making it suitable for smaller medical
datasets.!?
e Novel VIiT with Hierarchical Multi-Scale

Attention (HMSA): A 2025 study demonstrated that
this approach could achieve 98.7% accuracy in multi-
class tumor classification, significantly surpassing
EfficientNet and ResNet baselines.?

2.3 The
Revolution
The reliance of supervised models on vast, annotated datasets
is a major bottleneck. Annotating a single 3D MRI volume
requires hours of expert radiologist time. Furthermore,
supervised models are subject to the "Closed-Set" limitation: a
model trained on gliomas cannot detect a rare parasite or a
novel stroke presentation. '

Unsupervised Anomaly Detection (UAD)

This has driven a paradigm shift toward Unsupervised
Anomaly Detection (UAD). The core philosophy of UAD is
to learn the distribution of healthy brain anatomy (the
"normative distribution"). During inference, any region that
deviates significantly from this learned normality is flagged as
an anomaly. UAD methods are broadly categorized into
Reconstruction-based and Feature-based approaches.?*

2.3.1 Reconstruction-Based Paradigms

These models are trained to reconstruct healthy images. The
hypothesis is that the model, having never seen pathology, will
fail to reconstruct the anomalous region (e.g., a tumor),
effectively "healing" the image. The anomaly is detected by
computing the residual difference between the input scan and
the model's reconstruction.

e Autoencoders (AEs) & VAEs: Early attempts used
AEs to compress and reconstruct images. However,
simple AEs often learned the "identity function,”
reconstructing the anomaly as well as the healthy
tissue, leading to false negatives.?!

o Generative Adversarial Networks (GANs):
Architectures like f-AnoGAN and GANomaly
utilized adversarial training to enforce more realistic

While they improved image

sharpness, GANs are notoriously unstable and prone

reconstructions.

to "mode collapse," where they fail to capture the full
diversity of healthy anatomy.?’

e Denoising Diffusion  Probabilistic = Models
(DDPMs):
The current state-of-the-art in reconstruction.

Diffusion models learn to iteratively denoise an
image from pure Gaussian noise. By guiding this
process toward the learned manifold of healthy
brains, models can generate high-fidelity "pseudo-
healthy" counterfactuals.

o THOR (Temporal Harmonization for
Optimal  Restoration): Presented at
MICCAI 2024, THOR addresses the issue
where diffusion models change the healthy
anatomy (e.g., sulcal patterns) during
reconstruction, causing false positives. It
uses "implicit guidance" to harmonize the
reconstruction with the original input,
preserving healthy context.?®

o Cold Diffusion: This recent innovation
moves away from Gaussian noise, using
"degradation" transformations (blur, mask)
to better model the anomaly removal
process.'
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2.3.2 Feature-Based Paradigms

Instead of reconstructing the image pixel-by-pixel, feature-
based methods map the image to an abstract feature space
using pre-trained networks (like ResNet trained on ImageNet).
They then analyze the density of these feature vectors.
e SimpleNet: A breakthrough architecture that freezes
a pre-trained feature extractor and trains a simple
"feature adapter" to map MRI features to a compact
target distribution. It creates synthetic anomalies by
injecting Gaussian noise into the feature space,
training a discriminator to distinguish healthy
features from noisy ones. This method is orders of
magnitude faster than reconstruction methods.

e PatchCore: Stores a "memory bank" of healthy
feature patches and detects anomalies via Nearest
Neighbor search. While accurate, the memory bank
grows linearly with dataset size, posing scalability
issues.?

3. Methodology: Technical Analysis of Architectures and
Pipelines

To deeply understand the comparative advantages of these
approaches, we must dissect the engineering methodologies
that underpin them. This section details the standard
preprocessing pipelines and the architectural mechanics of the
most significant recent algorithms.

3.1 Data Curation and Preprocessing Pipelines

Before any deep learning model can process brain MRI data, a
rigorous preprocessing pipeline is essential to ensure data
consistency. Variations in patient orientation, scanner
magnetic field inhomogeneity, and the presence of non-brain
tissues can introduce artifacts that unsupervised models might
mistake for biological anomalies.
A standard preprocessing pipeline, as
benchmarks like BraTS and recent studies
involves the following steps:

1. De-Oblique and Re-orientation: MRI scans are

employed in
16, typically

often acquired at oblique angles to optimize the field
of view. Algorithms must first align the volume to a
standard anatomical axis (e.g., RPI: Right-Posterior-
Inferior) using tools like AFNI’s 3dresample or
FSL.%2

2. Image Registration: To analyze multi-modal data
(T1, T2, FLAIR), all sequences must be co-registered
to the same spatial grid. Furthermore, for population-
level learning, scans are often registered to a standard
atlas space (e.g., MNI152).%

field
intensity

3. Bias  Field Magnetic
inhomogeneity causes low-frequency
variations across the image (e.g., the center is
brighter than the edges). Algorithms like N4ITK are

used to correct this, ensuring that tissue intensity is
t.32

Correction:

consisten

4. Skull Stripping: Non-brain tissues (skull, eyes,
scalp) usually have high intensity and can confuse
detection algorithms. Tools like HD-BET or U-Net
based strippers remove these non-relevant voxels.*?

5. Intensity Normalization: Unlike CT scans which
use absolute Hounsfield Units, MRI intensity values
are relative. Z-score normalization (subtracting mean,
dividing by standard deviation) or histogram

matching is critical to ensure the model sees

consistent numerical different

ranges acCross

patients. !¢

3.2 Feature-Based Architectures: The Mechanics of

SimpleNet

SimpleNet 3! challenges the complexity of generative models
by demonstrating that simple feature adaptation can achieve
state-of-the-art results.

o Feature Extraction: The model utilizes a pre-trained
backbone (e.g., ResNet50) to extract local features
from the input image. These features encapsulate
texture and shape information but are biased toward
the domain they were trained on (usually ImageNet).

o Feature Adapter: A key innovation is the "Feature
Adapter," a shallow neural network that projects
these raw features into a target-specific space (the
"healthy MRI" manifold). This reduces domain bias.

e Anomalous Feature Generator: Instead of creating
synthetic anomaly images (which is difficult to do
realistically), SimpleNet adds Gaussian noise to the
feature vectors.

This is based on the intuition that anomalies in image space
(tumors) map to outliers in feature space. By filling the space
around the healthy manifold with noise, the model learns a
tight decision boundary.

e Discriminator and Truncated L1 Loss: A simple
Multi-Layer (MLP) acts as a
discriminator. It is trained wusing a specific
Truncated L1 Loss function, which prevents the
model from over-penalizing outliers during training,
resulting in a more robust decision boundary.3!

Perceptron
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3.3 Generative Architectures: The Mechanics of THOR
and Bernoulli Diffusion

Reconstruction-based methods have evolved from simple
Autoencoders to complex Diffusion Models to improve the
quality of the "pseudo-healthy" reference.

THOR (Temporal Harmonization for Optimal Restoration):
THOR addresses the "hallucination" problem where a
diffusion model, given a patient's scan, reconstructs a healthy
brain that looks anatomically different (e.g., different ventricle
size) even in healthy regions. This mismatch creates false
positives in the difference map.

e Implicit Guidance: THOR modifies the reverse
diffusion process. At each denoising step $t$, it
compares the current noisy prediction $x_t*{pred}$
with the original noisy input $x_t"{input}$.

e Harmonization Mask: It calculates a difference
mask: $Mask t=|x_t"{pred} - x_t*{input}| > \tau$.

e Selective Restoration: For regions where the
difference is low (likely healthy tissue), the model is
forced to keep the information from the original
input. For regions with high difference (potential
anomaly), the generative model is allowed to "heal"
the image. This technique, termed "harmonization,"

ensures pixel-perfect alignment in healthy areas.?®

Masked Bernoulli Diffusion:

A major barrier to clinical adoption of diffusion models is
speed; standard DDPMs require hundreds of iterations, taking
nearly a minute per slice. Masked Bernoulli Diffusion moves
the process into a binary latent space to solve this.34

1. Binarization: An autoencoder compresses the image

into a binary latent code.

2. Bernoulli Noise: Instead of Gaussian noise, the
model uses Bernoulli noise (bit flipping).

3. Masking: During denoising, the model identifies bits
with a high probability of flipping. High flipping
probability implies the bit is unstable or "surprising"
given the learned context of a healthy brain—i.e., it
represents a tumor. These bits are masked and
regenerated, while stable bits are preserved.

4. Result: This approach reduces inference time from
~50 seconds to ~5 seconds and memory usage from
~4GB to ~1.5GB, making it feasible for 3D
analysis.’

Vision-Guided Diffusion Model (VGDM):

VGDM 19 attempts to fix the "locality" issue of standard U-
Nets used in diffusion. It replaces the standard Convolutional
U-Net backbone of the diffusion model with a Swin
Transformer. As the diffusion process removes noise, the

Swin Transformer blocks compute self-attention across the
entire volume (or large windows), allowing the model to
capture global symmetry and long-range dependencies that
CNNs miss.

3.4 Hybrid Transformer Architectures: Swin-MAE

The Ano-swinMAE (Swin Transformer-based Masked
Autoencoder) represents the convergence of Transformer
power with self-supervised learning.
e  Masking Strategy: During training on healthy data,
random patches of the brain are masked out. The
Swin Transformer must reconstruct these missing
patches based on the visible context.

e Inference: When a pathological image is fed in, the
model reconstructs the image. Because it has only
learned to reconstruct healthy patterns from context,
it fails to reconstruct the tumor accurately (replacing
it with healthy tissue), thus revealing the anomaly in
the residual map. The "Shifted Window" mechanism
of the Swin block ensures that the model learns both
local texture and global structure.?!

4. Results: Comparative Analysis of State-of-the-Art
The evaluation of these advanced architectures is grounded in
rigorous benchmarking. The introduction of the BMAD
(Benchmarks for Medical Anomaly Detection) suite 7 and
the NOVA benchmark 3° has provided standardized metrics
for comparison.
4.1 Benchmark Metrics and Datasets
Evaluation relies on three primary metrics:

o Image AUROC: Area Under the Receiver Operating

Characteristic curve for detection (Is the image

anomalous?).

o Pixel AUROC: For localization (Which pixels are
anomalous?).

e Pixel-Pro: A region-weighted metric that penalizes
models for missing large connected components of a
lesion, providing a better proxy for clinical utility
than simple pixel accuracy.?’

Standard datasets include BraTS2021 (High-grade gliomas,
large anomalies), ATLAS (Stroke lesions), and MSLUB
(Multiple Sclerosis, small/subtle lesions).

4.2 Performance Analysis on Brain MRI (BraTS &
ATLAS)

Table 1: Comparative Performance of UAD Algorithms on
BraTS2021 (T2-FLAIR)

Data synthesized from BMAD benchmarks 27 and MICCAI
2024 findings.14

SimpleNet achieves a remarkable Pixel AUROC of 94.76% on
BraTS, significantly outperforming generative models like
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DRAEM (82.29%). This suggests that for identifying where a
tumor is, feature adaptation in a pre-trained space is superior
to pixel-level reconstruction. Feature-based methods leverage
the powerful, multi-scale representations of the ImageNet-
trained backbone, which are robust to texture variations.

Algorithm Model Image Pixel AUROC Pixel-Pro Inference
Category AUROC (Localization) (Segi tation) Speed
(Detection)

Generative f-AnoGAN 77.26% N/A N/A Slow

(GAN)

Generative DRAEM 62.35% 82.29% 63.76% Moderate

(AE)

Feature- DeepSVDD 86.98% N/A N/A Fast

Based

Feature- SimpleNet 82.52% 94.76% 78.38% Very Fast

Based (77 FPS)

Diffusion DDPM 80.15% 88.50% ~65% Very  Slow
(Standard) (50s/sample)

Diffusion THOR 85.40%* 93.10%* ~70% (Dice) Slow

Latent Masked 83.0% (est) 91.5% (est) High PSNR Fast

Diffusion Bernoulli (5s/sample)

Analysis of Results:

1. Dominance of Feature-Based Methods in

Localization:
2. The "Exactitude" of Diffusion for Segmentation:

While Feature-based methods are good at finding the lesion,
Diffusion models like THOR are superior at delineating it. In
stroke lesion segmentation (ATLAS dataset), THOR achieved
a Dice score of 63.64 for large lesions, a 34% improvement
over standard DDPMs. The harmonization technique allows
THOR to preserve the intricate sulcal patterns of healthy
tissue, reducing false positives that plague AE-based methods
(which often blur the cortex).28

3. Efficiency vs. Accuracy Trade-off:

There is a massive computational disparity. SimpleNet
operates at 77 Frames Per Second (FPS) on a standard GPU,
making it viable for real-time video or rapid triage. In contrast,
standard AnoDDPM requires ~50 seconds per sample.
However, the innovation of Masked Bernoulli Diffusion has
bridged this gap, offering diffusion-quality reconstruction in 5
seconds with only 1.47 GB of memory, presenting a potential
"best of both worlds" solution for 3D clinical workflows.36

4. The Small Lesion Challenge:

Performance varies drastically by anomaly size. While models
score high on BraTS (large tumors), they struggle with
MSLUB (small MS lesions). Feature-based methods often lose
the resolution required for small lesions due to the
downsampling in the backbone network. Specialized
architectures like Swin-MAE, which maintain hierarchical
resolutions, are being investigated to address this "small lesion
gap".21

5. Challenges and Limitations

Despite high benchmark scores, significant barriers prevent
the immediate clinical deployment of these systems.

5.1 The "Black Box" of Normative Distributions and
Domain Shift

UAD models rely on learning a "Normative Distribution" of
healthy brains. However, "healthy" is a fluid concept affected
by age, ethnicity, and scanner protocols. A model trained on
healthy young adults will flag the enlarged ventricles of a
healthy 80-year-old as an anomaly (brain atrophy vs.
hydrocephalus). This Domain Shift is a primary failure mode.
The NOVA benchmark *° was introduced to stress-test this,
revealing that many models fail when the "semantic"
appearance of the scan changes (e.g., different contrast
timing), leading to catastrophic false positive rates.

5.2 The 2D vs. 3D Dilemma

Most state-of-the-art models (including SimpleNet) process
3D MRI volumes as independent 2D slices to save memory.*’
This leads to the loss of volumetric context. A structure that
looks abnormal in a single slice (e.g., the top of the eye
socket) might be obviously normal when viewed in 3D
context. While models like VGDM '° and HUT !! introduce
3D attention, they are computationally expensive. The
industry is currently seeking efficient 3D backbones (like
SimpleSliceNet) that can aggregate slice-level features into a
coherent volumetric prediction without exploding memory
usage.*

5.3 Synthetic Bias

Methods like DRAEM and SimpleNet use synthetic anomalies
(noise, cut-paste shapes) during training to define the decision
boundary. This introduces a Synthetic Bias: the model
becomes excellent at detecting anomalies that resemble the
synthetic training noise but may miss real pathologies with
different textural characteristics (e.g., diffuse infiltrating
gliomas that do not look like "Gaussian noise"). Innovations
like Cold Diffusion and Disentangled Anomaly Generation
(DAG) ' aim to generate more biologically plausible
synthetic training examples to mitigate this.

6. Conclusion and Future Directions

The field of brain anomaly detection is undergoing a rapid
maturation from simple supervised classification to complex,
unsupervised  generative  reasoning.  The literature
demonstrates a clear bifurcation in methodology: Feature-
based methods (e.g., SimpleNet) provide the speed and
robust localization required for broad screening and triage,
while Diffusion Models (e.g., THOR, VGDM) offer the
high-fidelity anatomical understanding and interpretability
necessary for detailed surgical planning and volumetric
quantification.

The integration of Vision Transformers into these
architectures is proving to be a decisive factor, bridging the
gap between local texture analysis and global semantic
reasoning. The ability of Swin Transformers to model long-
range dependencies is helping to solve the locality bias of
CNNes, particularly in identifying subtle or diffuse anomalies.
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Looking forward, the research points toward Multimodal
Foundation Models and Self-Supervised Learning. Rather
than training small U-Nets on limited datasets, the future lies
in training massive Transformers on millions of diverse
images (CT, MRI, X-ray) to learn a robust, generalized
representation of human anatomy. Combined with Federated
Learning to address data privacy *!, these foundation models
could enable Zero-Shot Anomaly Detection, where a system
can identify rare diseases it has never explicitly been trained
on, simply by recognizing that they violate the fundamental
"grammar" of healthy anatomy.

For clinical translation, the priority must shift from chasing
marginal improvements in AUROC to addressing robustness:
creating models that are invariant to scanner differences,
adaptable to the aging brain, and capable of operating in full
3D context. As computational efficiency improves—
exemplified by binary latent diffusion—the prospect of an
"always-on" Al co-pilot that highlights potential anomalies in
real-time is becoming a tangible reality.
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