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Abstract— The detection, segmentation, and classification 

of brain anomalies—ranging from malignant gliomas and 

metastatic tumors to ischemic strokes and demyelinating 

lesions—constitutes a foundational challenge in modern 

neuroradiology. While Magnetic Resonance Imaging 

(MRI) provides unparalleled soft-tissue contrast and 

volumetric insight, the manual interpretation of these 

complex, high-dimensional data streams is labor-intensive, 

subject to inter-observer variability, and increasingly 

unsustainable against the backdrop of rising global disease 

burden. This research report presents an exhaustive 

synthesis of the current state-of-the-art in machine 

learning (ML) paradigms applied to brain anomaly 

detection. We systematically evaluate the trajectory from 

supervised Convolutional Neural Networks (CNNs), which 

revolutionized semantic segmentation but remain 

constrained by the scarcity of voxel-level annotations, to 

the nascent domain of Unsupervised Anomaly Detection 

(UAD) leveraging Generative AI. Detailed methodological 

analyses are provided for emerging architectures, 

including Vision Transformers (ViTs) that capture long-

range semantic dependencies, and Denoising Diffusion 

Probabilistic Models (DDPMs) that learn normative 

distributions of healthy anatomy to identify outliers. We 

critically assess benchmark performance across standard 

datasets such as BraTS2021, ATLAS, and the newly 

introduced NOVA and BMAD suites, highlighting the 

trade-offs between computational efficiency—where 

feature-adaptation networks like SimpleNet excel—and 

anatomical fidelity, where guided diffusion models like 

THOR dominate. Furthermore, we explore the 

implementation of hybrid systems like Swin-UNETR and 

Masked Bernoulli Diffusion, which attempt to reconcile 

the conflicting demands of 3D volumetric reasoning and 

GPU memory constraints. The report concludes that while 

supervised methods remain the gold standard for specific, 

well-characterized pathologies, the future of general-

purpose neuro-diagnostics lies in self-supervised, 

foundation-model-driven approaches capable of 

generalizing to open-set clinical environments. 
 

Keywords—Paradigms, Anamoly, self-supervised,neuro-diagnostics 

Computational efficiency , volumetric reasoning. 

 

1. Introduction 

1.1 The Global Burden of Central Nervous System 

Pathologies 

The imperative for automated brain anomaly detection is 

driven by a profound and escalating global health crisis. 

Central Nervous System (CNS) pathologies represent a 

significant source of mortality and morbidity worldwide. 

According to 2024 global cancer statistics, the incidence of 

brain and CNS cancers reached approximately 321,731 cases, 

resulting in 248,500 deaths, ranking 12th in global cancer 

mortality.1 While these tumors constitute less than 2% of all 

cancer cases, their impact is disproportionately severe due to 

their high mortality rates and the critical neurological deficits 

they induce.2 

The burden is particularly acute regarding malignant primary 

brain tumors. Glioblastoma (GBM), the most aggressive and 

common primary malignancy in adults, accounts for 

approximately 45% of all primary malignant brain tumors and 

16% of all primary brain tumors.3 Despite aggressive 

therapeutic regimens involving surgical resection, 

radiotherapy, and chemotherapy (e.g., temozolomide), the 

prognosis remains grim, with a five-year survival rate 

hovering between 5% and 10%.3 The situation is equally 

critical in pediatric populations, where brain tumors are the 

leading cause of cancer-related death, with approximately 

5,230 new cases expected in the United States alone in 2023.3 

Beyond oncology, the spectrum of brain anomalies includes 

prevalent conditions such as ischemic stroke, Multiple 

Sclerosis (MS), and Traumatic Brain Injury (TBI). The 

detection of White Matter Hyperintensities (WMH), often 

precursors to stroke or indicators of vascular dementia, 

requires the identification of subtle textural changes that can 

easily be overlooked in early stages. The prevalence of CNS 

cancers and associated anomalies is projected to rise by 31.6% 

among adults aged 20–64 by 2050, driven by aging 

populations and improved diagnostic access.2 This trajectory 

places an unsustainable load on the limited workforce of 

specialized neuroradiologists, necessitating the integration of 

Computer-Aided Diagnosis (CAD) systems to alleviate the 

"diagnostic bottleneck".5 
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1.2 The Diagnostic Bottleneck and Clinical Workflow 

 

In current clinical practice, the diagnosis of brain anomalies 

relies heavily on the qualitative interpretation of MRI scans. 

Radiologists must mentally integrate information from 

multiple 2D sequences to form a 3D understanding of the 

pathology. This process is inherently subjective and prone to 

fatigue-induced errors. Studies indicate that manual analysis is 

time-consuming and susceptible to significant inter-observer 

variability, particularly when delineating the boundaries of 

diffuse tumors like low-grade gliomas or quantifying the 

volume of MS lesions.6 

The complexity of the data further complicates this task. MRI 

is a multi-modal imaging technique, where different pulse 

sequences reveal distinct biological properties: 

 

• T1-weighted (T1w): Provides excellent anatomical 

detail and gray-white matter differentiation. 

• T2-weighted (T2w): Sensitive to water content, 

making it useful for detecting edema and 

inflammation. 

• Fluid-Attenuated Inversion Recovery (FLAIR): 

Suppresses the signal from cerebrospinal fluid (CSF), 

enhancing the visibility of periventricular lesions and 

edema.7 

• T1-weighted Contrast-Enhanced (T1Ce): 

Highlights the active tumor core where the blood-

brain barrier has been compromised. 

A radiologist must synthesize these modalities to distinguish 

between the enhancing tumor core, the non-enhancing 

peritumoral edema, and healthy necrotic tissue. The sheer 

volume of data generated by modern high-resolution scanners, 

often exceeding hundreds of slices per patient, makes manual 

voxel-level segmentation impractical for routine care.5 This 

has created a clear mandate for Machine Learning (ML) 

solutions that can automate detection, segmentation, and 

classification with high sensitivity and specificity. 

 

1.3 The Machine Learning Imperative 

 

The integration of ML and Deep Learning (DL) into 

neuroimaging represents a fundamental shift from descriptive 

to predictive radiology. The objective is not merely to 

replicate human performance but to augment it by detecting 

patterns invisible to the human eye (radiomics) and providing 

quantitative metrics for longitudinal monitoring.8 

Early CAD systems relied on traditional machine learning 

algorithms such as Support Vector Machines (SVMs), 

Random Forests (RF), and Artificial Neural Networks 

(ANNs).9 These approaches depended heavily on "handcrafted 

features"—manually designed mathematical descriptors of 

texture, shape, and intensity (e.g., Gray Level Co-occurrence 

Matrices). While effective for simple classification tasks, they 

lacked the capacity to model complex, varying anatomical 

structures and required extensive domain expertise for feature 

engineering.10 

The advent of Deep Learning, specifically Convolutional 

Neural Networks (CNNs), removed the need for manual 

feature extraction. By learning hierarchical representations 

directly from the raw pixel data, DL models achieved state-of-

the-art performance in semantic segmentation, exemplified by 

the success of the U-Net architecture in the Multimodal Brain 

Tumor Segmentation (BraTS) challenges.11 However, as we 

will explore in this report, the reliance on large, annotated 

datasets has spurred a secondary revolution toward 

Unsupervised Anomaly Detection (UAD) and Generative AI, 

aiming to solve the "data scarcity" and "open-set" problems 

that plague supervised learning.13 

 

2. Literature Survey: The Evolution of Architectures 

 

The field of brain anomaly detection has traversed three 

distinct eras: the age of Supervised CNNs, the emergence of 

Vision Transformers, and the current frontier of Unsupervised 

Generative Models. 

 

2.1 The Era of Supervised Convolutional Neural Networks 

(CNNs) 

 

For the past decade, CNNs have been the dominant paradigm 

in medical image analysis. The core mechanism of a CNN 

involves convolving learnable filters over the input image to 

extract local features (edges, textures) which are then 

aggregated into high-level semantic representations. 

The U-Net Standard: 

The U-Net architecture, introduced by Ronneberger et al., 

remains the cornerstone of biomedical segmentation. Its 

symmetric encoder-decoder structure, linked by skip 

connections, allows the network to combine deep semantic 

information (from the encoder) with high-resolution spatial 

details (from the decoder).12 Variants of U-Net, such as the 

3D U-Net and V-Net, were developed to handle volumetric 

MRI data directly, addressing the loss of z-axis context 

inherent in 2D slice-processing models.15 

Recent systematic reviews from 2024 and 2025 emphasize 

that supervised CNN pipelines often combine segmentation 

with classification. For instance, models employing VGG-19 

or ResNet-50 backbones have achieved classification 

accuracies exceeding 97% for differentiating between glioma 

grades or tumor types (meningioma vs. pituitary vs. glioma).8 

A study utilizing a pipeline of VGG combined with U-Net 

segmentation reported an accuracy of 97.44%, demonstrating 

the efficacy of cascading detection and segmentation tasks.16 

Limitations of Pure CNNs: 

Despite their success, CNNs suffer from a "locality bias." The 

receptive field of a convolutional operation is limited to the 

kernel size (typically 3x3), meaning the network struggles to 

model long-range dependencies across a large brain volume 

unless the network is extremely deep.18 This limitation is 

critical in neuroimaging, where the spatial relationship 

between distant structures (e.g., bilateral symmetry of the 

ventricles) is a key indicator of anomaly.19 
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2.2 The Rise of Vision Transformers (ViTs) 

 

To address the limitations of CNNs, the field has increasingly 

adopted Vision Transformers (ViTs). Originally designed for 

Natural Language Processing (NLP), Transformers utilize a 

self-attention mechanism that allows every element in a 

sequence to "attend" to every other element, regardless of 

distance. In vision, images are divided into patches (tokens), 

enabling the model to capture global semantic context.20 

Swin Transformers: 

The Swin (Shifted Window) Transformer has emerged as a 

preferred architecture for medical imaging. Standard ViTs 

suffer from quadratic computational complexity with respect 

to image size. Swin Transformers mitigate this by computing 

self-attention within local windows that shift between layers, 

creating a hierarchical representation with linear 

complexity.18 This architecture is particularly well-suited for 

high-resolution MRI analysis. 

• Performance: Recent studies employing Swin 

Transformers for brain tumor classification have 

reported accuracies of up to 99.0% on single datasets, 

outperforming classic ViT-b32 and ResNet models.22 

• Hybrid Models: Recognizing that CNNs are 

superior at capturing low-level morphological details 

while Transformers excel at global context, hybrid 

architectures like Swin-UNETR, TransBTS, and 

TransUNet have been developed. These models use 

a Transformer encoder to extract global features and 

a CNN decoder to refine segmentation boundaries.15 

Advanced Transformer Variants (2024-2025): 

• RanMerFormer: Proposed in 2024, this model uses 

a randomized token merging algorithm to reduce the 

computational redundancy of ViTs, addressing the 

high memory cost of processing 3D volumes.15 

• LCDEIT (Linear Complexity Data-Efficient 

Image Transformer): Introduced to tackle the 

inductive bias and parameter dependency of standard 

ViTs, making it suitable for smaller medical 

datasets.15 

• Novel ViT with Hierarchical Multi-Scale 

Attention (HMSA): A 2025 study demonstrated that 

this approach could achieve 98.7% accuracy in multi-

class tumor classification, significantly surpassing 

EfficientNet and ResNet baselines.23 

2.3 The Unsupervised Anomaly Detection (UAD) 

Revolution 

The reliance of supervised models on vast, annotated datasets 

is a major bottleneck. Annotating a single 3D MRI volume 

requires hours of expert radiologist time. Furthermore, 

supervised models are subject to the "Closed-Set" limitation: a 

model trained on gliomas cannot detect a rare parasite or a 

novel stroke presentation.13 

This has driven a paradigm shift toward Unsupervised 

Anomaly Detection (UAD). The core philosophy of UAD is 

to learn the distribution of healthy brain anatomy (the 

"normative distribution"). During inference, any region that 

deviates significantly from this learned normality is flagged as 

an anomaly. UAD methods are broadly categorized into 

Reconstruction-based and Feature-based approaches.24 

 

2.3.1 Reconstruction-Based Paradigms 

 

These models are trained to reconstruct healthy images. The 

hypothesis is that the model, having never seen pathology, will 

fail to reconstruct the anomalous region (e.g., a tumor), 

effectively "healing" the image. The anomaly is detected by 

computing the residual difference between the input scan and 

the model's reconstruction. 

• Autoencoders (AEs) & VAEs: Early attempts used 

AEs to compress and reconstruct images. However, 

simple AEs often learned the "identity function," 

reconstructing the anomaly as well as the healthy 

tissue, leading to false negatives.21 

• Generative Adversarial Networks (GANs): 

Architectures like f-AnoGAN and GANomaly 

utilized adversarial training to enforce more realistic 

reconstructions. While they improved image 

sharpness, GANs are notoriously unstable and prone 

to "mode collapse," where they fail to capture the full 

diversity of healthy anatomy.27 

• Denoising Diffusion Probabilistic Models 

(DDPMs):  

The current state-of-the-art in reconstruction. 

Diffusion models learn to iteratively denoise an 

image from pure Gaussian noise. By guiding this 

process toward the learned manifold of healthy 

brains, models can generate high-fidelity "pseudo-

healthy" counterfactuals. 

o THOR (Temporal Harmonization for 

Optimal Restoration): Presented at 

MICCAI 2024, THOR addresses the issue 

where diffusion models change the healthy 

anatomy (e.g., sulcal patterns) during 

reconstruction, causing false positives. It 

uses "implicit guidance" to harmonize the 

reconstruction with the original input, 

preserving healthy context.28 

o Cold Diffusion: This recent innovation 

moves away from Gaussian noise, using 

"degradation" transformations (blur, mask) 

to better model the anomaly removal 

process.14 
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2.3.2 Feature-Based Paradigms 

 

Instead of reconstructing the image pixel-by-pixel, feature-

based methods map the image to an abstract feature space 

using pre-trained networks (like ResNet trained on ImageNet). 

They then analyze the density of these feature vectors. 

• SimpleNet: A breakthrough architecture that freezes 

a pre-trained feature extractor and trains a simple 

"feature adapter" to map MRI features to a compact 

target distribution. It creates synthetic anomalies by 

injecting Gaussian noise into the feature space, 

training a discriminator to distinguish healthy 

features from noisy ones. This method is orders of 

magnitude faster than reconstruction methods.30 

• PatchCore: Stores a "memory bank" of healthy 

feature patches and detects anomalies via Nearest 

Neighbor search. While accurate, the memory bank 

grows linearly with dataset size, posing scalability 

issues.25 

3. Methodology: Technical Analysis of Architectures and 

Pipelines 

 

To deeply understand the comparative advantages of these 

approaches, we must dissect the engineering methodologies 

that underpin them. This section details the standard 

preprocessing pipelines and the architectural mechanics of the 

most significant recent algorithms. 

 

3.1 Data Curation and Preprocessing Pipelines 

 

Before any deep learning model can process brain MRI data, a 

rigorous preprocessing pipeline is essential to ensure data 

consistency. Variations in patient orientation, scanner 

magnetic field inhomogeneity, and the presence of non-brain 

tissues can introduce artifacts that unsupervised models might 

mistake for biological anomalies. 

A standard preprocessing pipeline, as employed in 

benchmarks like BraTS and recent studies 16, typically 

involves the following steps: 

1. De-Oblique and Re-orientation: MRI scans are 

often acquired at oblique angles to optimize the field 

of view. Algorithms must first align the volume to a 

standard anatomical axis (e.g., RPI: Right-Posterior-

Inferior) using tools like AFNI’s 3dresample or 

FSL.32 

2. Image Registration: To analyze multi-modal data 

(T1, T2, FLAIR), all sequences must be co-registered 

to the same spatial grid. Furthermore, for population-

level learning, scans are often registered to a standard 

atlas space (e.g., MNI152).32 

 

3. Bias Field Correction: Magnetic field 

inhomogeneity causes low-frequency intensity 

variations across the image (e.g., the center is 

brighter than the edges). Algorithms like N4ITK are 

used to correct this, ensuring that tissue intensity is 

consistent.32 

4. Skull Stripping: Non-brain tissues (skull, eyes, 

scalp) usually have high intensity and can confuse 

detection algorithms. Tools like HD-BET or U-Net 

based strippers remove these non-relevant voxels.32 

5. Intensity Normalization: Unlike CT scans which 

use absolute Hounsfield Units, MRI intensity values 

are relative. Z-score normalization (subtracting mean, 

dividing by standard deviation) or histogram 

matching is critical to ensure the model sees 

consistent numerical ranges across different 

patients.16 

3.2 Feature-Based Architectures: The Mechanics of 

SimpleNet 

 

SimpleNet 31 challenges the complexity of generative models 

by demonstrating that simple feature adaptation can achieve 

state-of-the-art results. 

• Feature Extraction: The model utilizes a pre-trained 

backbone (e.g., ResNet50) to extract local features 

from the input image. These features encapsulate 

texture and shape information but are biased toward 

the domain they were trained on (usually ImageNet). 

• Feature Adapter: A key innovation is the "Feature 

Adapter," a shallow neural network that projects 

these raw features into a target-specific space (the 

"healthy MRI" manifold). This reduces domain bias. 

• Anomalous Feature Generator: Instead of creating 

synthetic anomaly images (which is difficult to do 

realistically), SimpleNet adds Gaussian noise to the 

feature vectors. 

This is based on the intuition that anomalies in image space 

(tumors) map to outliers in feature space. By filling the space 

around the healthy manifold with noise, the model learns a 

tight decision boundary. 

• Discriminator and Truncated L1 Loss: A simple 

Multi-Layer Perceptron (MLP) acts as a 

discriminator. It is trained using a specific 

Truncated L1 Loss function, which prevents the 

model from over-penalizing outliers during training, 

resulting in a more robust decision boundary.31 
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3.3 Generative Architectures: The Mechanics of THOR 

and Bernoulli Diffusion 

 

Reconstruction-based methods have evolved from simple 

Autoencoders to complex Diffusion Models to improve the 

quality of the "pseudo-healthy" reference. 

THOR (Temporal Harmonization for Optimal Restoration): 

THOR addresses the "hallucination" problem where a 

diffusion model, given a patient's scan, reconstructs a healthy 

brain that looks anatomically different (e.g., different ventricle 

size) even in healthy regions. This mismatch creates false 

positives in the difference map. 

• Implicit Guidance: THOR modifies the reverse 

diffusion process. At each denoising step $t$, it 

compares the current noisy prediction $x_t^{pred}$ 

with the original noisy input $x_t^{input}$. 

• Harmonization Mask: It calculates a difference 

mask: $Mask_t = |x_t^{pred} - x_t^{input}| > \tau$. 

• Selective Restoration: For regions where the 

difference is low (likely healthy tissue), the model is 

forced to keep the information from the original 

input. For regions with high difference (potential 

anomaly), the generative model is allowed to "heal" 

the image. This technique, termed "harmonization," 

ensures pixel-perfect alignment in healthy areas.28 

Masked Bernoulli Diffusion: 

 

A major barrier to clinical adoption of diffusion models is 

speed; standard DDPMs require hundreds of iterations, taking 

nearly a minute per slice. Masked Bernoulli Diffusion moves 

the process into a binary latent space to solve this.34 

1. Binarization: An autoencoder compresses the image 

into a binary latent code. 

2. Bernoulli Noise: Instead of Gaussian noise, the 

model uses Bernoulli noise (bit flipping). 

3. Masking: During denoising, the model identifies bits 

with a high probability of flipping. High flipping 

probability implies the bit is unstable or "surprising" 

given the learned context of a healthy brain—i.e., it 

represents a tumor. These bits are masked and 

regenerated, while stable bits are preserved. 

4. Result: This approach reduces inference time from 

~50 seconds to ~5 seconds and memory usage from 

~4GB to ~1.5GB, making it feasible for 3D 

analysis.36 

Vision-Guided Diffusion Model (VGDM): 

VGDM 19 attempts to fix the "locality" issue of standard U-

Nets used in diffusion. It replaces the standard Convolutional 

U-Net backbone of the diffusion model with a Swin 

Transformer. As the diffusion process removes noise, the 

Swin Transformer blocks compute self-attention across the 

entire volume (or large windows), allowing the model to 

capture global symmetry and long-range dependencies that 

CNNs miss. 

 

3.4 Hybrid Transformer Architectures: Swin-MAE 

 

The Ano-swinMAE (Swin Transformer-based Masked 

Autoencoder) represents the convergence of Transformer 

power with self-supervised learning. 

• Masking Strategy: During training on healthy data, 

random patches of the brain are masked out. The 

Swin Transformer must reconstruct these missing 

patches based on the visible context. 

• Inference: When a pathological image is fed in, the 

model reconstructs the image. Because it has only 

learned to reconstruct healthy patterns from context, 

it fails to reconstruct the tumor accurately (replacing 

it with healthy tissue), thus revealing the anomaly in 

the residual map. The "Shifted Window" mechanism 

of the Swin block ensures that the model learns both 

local texture and global structure.21 

4. Results: Comparative Analysis of State-of-the-Art 

The evaluation of these advanced architectures is grounded in 

rigorous benchmarking. The introduction of the BMAD 

(Benchmarks for Medical Anomaly Detection) suite 7 and 

the NOVA benchmark 39 has provided standardized metrics 

for comparison. 

4.1 Benchmark Metrics and Datasets 

Evaluation relies on three primary metrics: 

• Image AUROC: Area Under the Receiver Operating 

Characteristic curve for detection (Is the image 

anomalous?). 

• Pixel AUROC: For localization (Which pixels are 

anomalous?). 

• Pixel-Pro: A region-weighted metric that penalizes 

models for missing large connected components of a 

lesion, providing a better proxy for clinical utility 

than simple pixel accuracy.27 

Standard datasets include BraTS2021 (High-grade gliomas, 

large anomalies), ATLAS (Stroke lesions), and MSLUB 

(Multiple Sclerosis, small/subtle lesions). 

 

4.2 Performance Analysis on Brain MRI (BraTS & 

ATLAS) 

 

Table 1: Comparative Performance of UAD Algorithms on 

BraTS2021 (T2-FLAIR) 

Data synthesized from BMAD benchmarks 27 and MICCAI 

2024 findings.14 

 

SimpleNet achieves a remarkable Pixel AUROC of 94.76% on 

BraTS, significantly outperforming generative models like 
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DRAEM (82.29%). This suggests that for identifying where a 

tumor is, feature adaptation in a pre-trained space is superior 

to pixel-level reconstruction. Feature-based methods leverage 

the powerful, multi-scale representations of the ImageNet-

trained backbone, which are robust to texture variations. 

 
Algorithm 

Category 

Model Image 

AUROC 

(Detection) 

Pixel AUROC 

(Localization) 

Pixel-Pro 

(Segmentation) 

Inference 

Speed 

Generative 

(GAN) 

f-AnoGAN 77.26% N/A N/A Slow 

Generative 

(AE) 

DRAEM 62.35% 82.29% 63.76% Moderate 

Feature-

Based 

DeepSVDD 86.98% N/A N/A Fast 

Feature-

Based 

SimpleNet 82.52% 94.76% 78.38% Very Fast 

(77 FPS) 

Diffusion DDPM 

(Standard) 

80.15% 88.50% ~65% Very Slow 

(50s/sample) 

Diffusion THOR 85.40%* 93.10%* ~70% (Dice) Slow 

Latent 

Diffusion 

Masked 

Bernoulli 

83.0% (est) 91.5% (est) High PSNR Fast 

(5s/sample) 

 

Analysis of Results: 

 

1. Dominance of Feature-Based Methods in 

Localization: 

2. The "Exactitude" of Diffusion for Segmentation: 

While Feature-based methods are good at finding the lesion, 

Diffusion models like THOR are superior at delineating it. In 

stroke lesion segmentation (ATLAS dataset), THOR achieved 

a Dice score of 63.64 for large lesions, a 34% improvement 

over standard DDPMs. The harmonization technique allows 

THOR to preserve the intricate sulcal patterns of healthy 

tissue, reducing false positives that plague AE-based methods 

(which often blur the cortex).28 

 

3. Efficiency vs. Accuracy Trade-off: 

There is a massive computational disparity. SimpleNet 

operates at 77 Frames Per Second (FPS) on a standard GPU, 

making it viable for real-time video or rapid triage. In contrast, 

standard AnoDDPM requires ~50 seconds per sample. 

However, the innovation of Masked Bernoulli Diffusion has 

bridged this gap, offering diffusion-quality reconstruction in 5 

seconds with only 1.47 GB of memory, presenting a potential 

"best of both worlds" solution for 3D clinical workflows.36 

 

4. The Small Lesion Challenge: 

Performance varies drastically by anomaly size. While models 

score high on BraTS (large tumors), they struggle with 

MSLUB (small MS lesions). Feature-based methods often lose 

the resolution required for small lesions due to the 

downsampling in the backbone network. Specialized 

architectures like Swin-MAE, which maintain hierarchical 

resolutions, are being investigated to address this "small lesion 

gap".21 

 

5. Challenges and Limitations 

 

Despite high benchmark scores, significant barriers prevent 

the immediate clinical deployment of these systems. 

 

5.1 The "Black Box" of Normative Distributions and 

Domain Shift 

 

UAD models rely on learning a "Normative Distribution" of 

healthy brains. However, "healthy" is a fluid concept affected 

by age, ethnicity, and scanner protocols. A model trained on 

healthy young adults will flag the enlarged ventricles of a 

healthy 80-year-old as an anomaly (brain atrophy vs. 

hydrocephalus). This Domain Shift is a primary failure mode. 

The NOVA benchmark 39 was introduced to stress-test this, 

revealing that many models fail when the "semantic" 

appearance of the scan changes (e.g., different contrast 

timing), leading to catastrophic false positive rates. 

 

5.2 The 2D vs. 3D Dilemma 

 

Most state-of-the-art models (including SimpleNet) process 

3D MRI volumes as independent 2D slices to save memory.40 

This leads to the loss of volumetric context. A structure that 

looks abnormal in a single slice (e.g., the top of the eye 

socket) might be obviously normal when viewed in 3D 

context. While models like VGDM 19 and HUT 11 introduce 

3D attention, they are computationally expensive. The 

industry is currently seeking efficient 3D backbones (like 

SimpleSliceNet) that can aggregate slice-level features into a 

coherent volumetric prediction without exploding memory 

usage.40 

 

5.3 Synthetic Bias 

 

Methods like DRAEM and SimpleNet use synthetic anomalies 

(noise, cut-paste shapes) during training to define the decision 

boundary. This introduces a Synthetic Bias: the model 

becomes excellent at detecting anomalies that resemble the 

synthetic training noise but may miss real pathologies with 

different textural characteristics (e.g., diffuse infiltrating 

gliomas that do not look like "Gaussian noise"). Innovations 

like Cold Diffusion and Disentangled Anomaly Generation 

(DAG) 14 aim to generate more biologically plausible 

synthetic training examples to mitigate this. 

 

6. Conclusion and Future Directions 

 

The field of brain anomaly detection is undergoing a rapid 

maturation from simple supervised classification to complex, 

unsupervised generative reasoning. The literature 

demonstrates a clear bifurcation in methodology: Feature-

based methods (e.g., SimpleNet) provide the speed and 

robust localization required for broad screening and triage, 

while Diffusion Models (e.g., THOR, VGDM) offer the 

high-fidelity anatomical understanding and interpretability 

necessary for detailed surgical planning and volumetric 

quantification. 

The integration of Vision Transformers into these 

architectures is proving to be a decisive factor, bridging the 

gap between local texture analysis and global semantic 

reasoning. The ability of Swin Transformers to model long-

range dependencies is helping to solve the locality bias of 

CNNs, particularly in identifying subtle or diffuse anomalies. 
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Looking forward, the research points toward Multimodal 

Foundation Models and Self-Supervised Learning. Rather 

than training small U-Nets on limited datasets, the future lies 

in training massive Transformers on millions of diverse 

images (CT, MRI, X-ray) to learn a robust, generalized 

representation of human anatomy. Combined with Federated 

Learning to address data privacy 41, these foundation models 

could enable Zero-Shot Anomaly Detection, where a system 

can identify rare diseases it has never explicitly been trained 

on, simply by recognizing that they violate the fundamental 

"grammar" of healthy anatomy. 

For clinical translation, the priority must shift from chasing 

marginal improvements in AUROC to addressing robustness: 

creating models that are invariant to scanner differences, 

adaptable to the aging brain, and capable of operating in full 

3D context. As computational efficiency improves—

exemplified by binary latent diffusion—the prospect of an 

"always-on" AI co-pilot that highlights potential anomalies in 

real-time is becoming a tangible reality. 
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