

Agro-bot

Mr. Gavakar Viraj Vijay¹, Mr. Gawde Omkar Dhananjay², Mr. Jamdar Latesh Uday³, Mr. Gurav Manasraj Gurunath⁴, Mr. Ghadigaonkar Swami Baburao⁵, Mr. T. M. Patil⁶

¹²³⁴⁵ Students, Yashwantrao Bhonsale Institute of Technology, Sawantwadi, Maharashtra, India

⁶ Faculty, Yashwantrao Bhonsale Institute of Technology, Sawantwadi, Maharashtra, India

[1omkargawde662@gmail.com](mailto:omkargawde662@gmail.com), [2gavakarviraj@gmail.com](mailto:gavakarviraj@gmail.com), [3manasgurav19@gmail.com](mailto:manasgurav19@gmail.com)

Abstract — Agriculture faces several challenges such as labor shortage, inefficient use of water, lack of continuous soil monitoring, and excessive application of pesticides and fertilizers, which negatively affect productivity and sustainability. Manual farming operations including seed sowing, irrigation, and spraying are time-consuming, labor-intensive, and often result in uneven application and wastage of valuable resources. To address these limitations, this paper presents the design and development of a Smart Multi-Functional Agrobot that integrates robotics, sensor technology, and IoT concepts to enhance agricultural efficiency and reduce human effort. The proposed system is capable of performing essential farming tasks such as seed sowing, soil moisture-based irrigation, soil pH monitoring, and controlled pesticide spraying with improved accuracy. An Arduino Uno is used for controlling motors, pumps, and actuators, while an ESP32 module processes sensor data and enables wireless monitoring and future cloud connectivity. Sensor-based automation allows timely decision-making, optimized resource utilization, and reduced dependency on manual labor. The compact, modular, and cost-effective design makes the system suitable for small and medium-scale farmers. Experimental results demonstrate improved operational safety, efficient resource management, and environmentally sustainable farming practices, highlighting the strong potential of IoT-based automation in modern precision agriculture. Keywords — IoT, Smart Agrobot, Precision Farming, Soil Moisture Sensor, pH Sensor, Arduino, ESP32

I. INTRODUCTION

A. Overview :

The Smart Multi-Functional Agrobot is developed to enhance efficiency, safety, and accuracy in various agricultural operations such as seed sowing, irrigation, soil monitoring, and pesticide spraying. Traditional farming practices rely heavily on manual labor, which increases physical effort, time consumption, and operational costs. Farmers are often exposed to health risks, particularly during pesticide spraying, where direct contact with harmful chemicals can cause skin irritation, respiratory problems, and long-term health complications. Moreover, conventional farming methods lack precision, leading to improper and excessive use of water, fertilizers, and pesticides. The proposed Agrobot addresses these challenges by introducing automation and sensor-based monitoring, enabling more controlled, accurate, and efficient agricultural operations. By minimizing human involvement and optimizing resource usage, the system supports safer working conditions, improved crop management, and sustainable farming practices suitable for modern agriculture.

B. Proposed system functions :

This project focuses on developing a Smart Multi-Functional Agrobot that uses automation and IoT-based sensing to perform essential agricultural

operations efficiently. The robot is designed to move across the field under wireless joystick control while monitoring soil conditions in real time using moisture and pH sensors. Based on sensor inputs, the system supports automatic irrigation and provides useful soil information for better crop planning. The Agrobot is capable of performing multiple functions such as seed sowing, soil moisture-based watering, and pesticide spraying with improved accuracy.

C. Components :

- Arduino Uno microcontroller
- ESP32 Wi-Fi module
- Soil moisture sensor
- pH sensor module
- RF joystick and transceiver module
- DC motors with motor driver
- Water pump and spray nozzle
- Rechargeable battery
- Robot chassis and wheels

D. Advantages of Agro-bot :

Improved Farmer Safety: The Agrobot performs farming tasks automatically, reducing direct human contact with pesticides and minimizing health hazards during spraying operations.

Accurate Resource Usage: Sensor-based monitoring ensures that water and chemicals are applied only

when required, avoiding unnecessary overuse and improving farming accuracy.

Lower Operational Expenses: By reducing manual labor and preventing wastage of seeds, water, and pesticides, the system helps farmers save money over time.

Eco-Friendly Operation: Controlled irrigation and spraying reduce chemical runoff and soil contamination, supporting environmentally responsible farming practices.

Efficient Power Utilization: The system is designed to operate with low power consumption and can support renewable energy sources, making it suitable for long-term agricultural use.

Ease of Monitoring and Control: Wireless control enables farmers to operate and monitor the robot easily, even from a distance, improving convenience and productivity.

II. SYSTEM ANALYSIS

A. Problem Definition:

Agriculture still depends largely on traditional and manual farming practices, which create several difficulties for farmers in terms of safety, efficiency, and productivity. Operations such as pesticide spraying, irrigation, and soil monitoring are usually carried out manually, requiring continuous human involvement. These methods are not only time-consuming and physically demanding but also lack accuracy and consistency. In many cases, farmers rely on experience and guesswork rather than real-time data, which leads to improper use of water and chemicals. With increasing labour shortages and rising input costs, traditional agricultural practices are becoming less sustainable.

1. Health and Safety Issues:

Manual spraying of pesticides exposes farmers directly to harmful chemicals, which can cause skin diseases, breathing problems, and long-term health risks. Lack of protective equipment further increases these dangers.

2. Inefficient Use of Resources:

Traditional methods often lead to improper application of water and pesticides. Overuse increases costs and causes environmental pollution, while underuse affects crop growth and yield.

3. High Labour Requirement:

Agricultural operations such as spraying, watering, and monitoring require significant manual effort and time. This increases labour dependency and makes farming difficult during labour shortages.

4. Lack of Field Monitoring:

Farmers do not always have accurate information about soil moisture and field conditions, leading to poor decision-making and reduced productivity.

5. Field Navigation Difficulties:

Agricultural fields contain obstacles, uneven surfaces, and varying crop layouts, making manual operations slow and inefficient.

B. Implementation:

The Smart Agrobot is implemented by integrating sensors, actuators, and a microcontroller to automate agricultural spraying operations. An Arduino-based controller is used to connect and control the moisture sensor, ultrasonic sensor, water pump, and motor driver. The moisture sensor continuously checks soil conditions and activates the pump when required, ensuring controlled spraying. A Wi-Fi module enables remote monitoring and control of the robot, reducing the need for direct human involvement.

An ultrasonic sensor is used for obstacle detection, allowing the robot to stop or avoid collisions during movement. DC motors controlled through a motor driver provide smooth navigation in the field. The system is powered using a battery with support from a solar panel for improved energy efficiency. This implementation ensures accurate pesticide application, reduced labour, and improved safety for farmers.

C. Circuit Diagram:

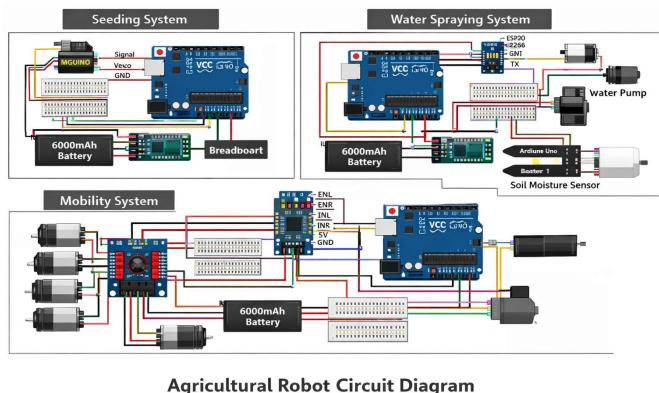


Fig1. Circuit diagram of agro-bot

- Arduino Uno controls all robot operations
- Modular design: Seeding, Spraying, and Mobility systems
- Soil moisture sensor enables automatic watering
- Servo motor provides controlled seed dispensing
- DC motors + L298N ensure smooth movement
- ESP8266 allows wireless monitoring
- 6000 mAh battery powers the entire system

D. Model:

Fig2. Developed Model

III. DISCUSSION

A. Interpretation of Results:

The implementation results show that the Smart Agrobot operates effectively in agricultural conditions. The obstacle detection sensor successfully prevents collisions, allowing safe movement across the field. The soil moisture sensor provides accurate readings, enabling controlled and need-based spraying, which reduces chemical wastage. The spraying mechanism ensures uniform application, improving coverage and efficiency. Wireless connectivity allows easy monitoring and control, while the microcontroller manages all system functions smoothly once programmed. The robot performs automated operations with minimal human involvement, improving safety and reducing labour effort. Overall, the results confirm that the system enhances efficiency, optimizes pesticide usage, and supports safer and more sustainable farming practices.

B. Comparison with Previous Research:

The Smart Agrobot improves upon earlier agricultural systems by combining automation, sensors, and wireless monitoring in a single platform. Unlike traditional methods, it reduces manual effort and supports more accurate and efficient farm operations.

C. Limitations:

- The current design supports limited agricultural functions and does not include advanced features such as crop health analysis or yield prediction.
- System performance may be affected by uneven terrain, sensor accuracy, and power availability in real field conditions.

D. Suggestions for Future Research:

Future work can focus on integrating artificial intelligence to analyze crop and soil conditions for better decision-making. Additional sensors can be added to monitor nutrients, plant health, and field conditions more accurately. Expanding the robot's functions to perform multiple agricultural tasks would improve its usefulness. Energy efficiency can be enhanced through better power management and renewable energy sources. Further research may also explore modular designs to make the system adaptable to different crops and farming environments.

IV. CONCLUSIONS AND FUTURE WORK

A. CONCLUSION:

The design and implementation of the Smart Agrobot using IoT technology have been successfully completed and tested. The system demonstrates effective automation of agricultural operations by integrating sensors, controllers, and wireless monitoring. Real-time soil sensing enables efficient use of resources, while obstacle detection ensures safe and reliable movement in farm fields. Automation reduces human effort and exposure to harmful conditions, improving safety and productivity. The results show that the Agrobot supports accurate, efficient, and sustainable farming practices. Overall, the project highlights the potential of smart automation and IoT in modern agriculture and provides a practical solution for small and medium-scale farmers.

B. FUTURE WORK:

In future developments, the Smart Agrobot can be enhanced by integrating artificial intelligence to support intelligent analysis of soil and crop conditions, enabling better decision-making. Additional sensors such as nutrient, temperature, and humidity sensors can be included to provide more accurate field data. The power system can be improved using advanced renewable energy sources and better energy management techniques to increase operating time. The robot's functionality can be expanded to include tasks such as fertilizer application, automated irrigation, weed control, and crop monitoring, making it a complete agricultural assistant. Further testing in larger fields and under different farming conditions will help improve reliability and adaptability. Collaboration with farmers and agricultural experts can also help tailor the system to regional farming needs and encourage practical adoption.

ACKNOWLEDGEMENT

We express our sincere gratitude to our project guide Mr. T. M. Patil for his continuous guidance, encouragement, and valuable suggestions throughout the project work. We are also thankful to the project coordinator Mr. P. D. Kate for his support and timely assistance. We extend our sincere thanks to the Head of the Department Mr. P. D. Kate for providing

necessary facilities and motivation. We are grateful to all the faculty members of our department for their helpful feedback and cooperation. Finally, we thank our institute for providing a supportive environment and resources that made the successful completion of this project possible.

REFERENCES

- “Design and Development of Smart Agricultural Robot for Precision Farming,” International Journal of Innovative Research in Technology (IJIRT), Manuscript ID: 144788.
- “IoT Based Smart Farming System Using Sensors and Automation,” International Journal of Innovative Research in Technology (IJIRT), Manuscript ID: 145316.
- “Development of Multipurpose Agricultural Robot,” International Journal of Innovative Research in Technology (IJIRT), Manuscript ID: 148122.
- “Automation and Robotics in Modern Agriculture,” International Journal of Innovative Research in Technology (IJIRT), Manuscript ID: 149938.
- “Smart Farming Techniques Using IoT and Robotics,” International Journal of Innovative Research in Technology (IJIRT), Manuscript ID: 178115.